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ABSTRACT

The foreign exchange (Forex) market has greatly influenced the global financial market. While Forex trading offers 
investors substantial yield prospects, some risks are also involved. It is challenging to accurately model financial time 
series due to their nonlinear, non-stationary and noisy properties with an uncertain and hidden relationship. Thus, 
developing extremely precise forecasting techniques is crucial for investors and decision-makers. This study introduces 
a novel hybrid forecasting model, VMD-CEEMDAN-GRU-ATCN, designed to improve Forex price prediction accuracy. 
To begin with, our proposed model utilizes the variational model decomposition (VMD) technique for breaking down 
raw prices into multiple sub-components and residual terms. The complete ensemble empirical mode decomposition 
with adaptive noise (CEEMDAN) technique is utilized to extract features from the residual terms, which involves 
further decomposition and analysis of these complex information-containing terms. These sub-components are then 
predicted by the gated recurrent unit (GRU) model. To enhance the effectiveness of our hybrid model, we include the 
open, high, low, and close prices and seven Forex market technical indicators. Finally, an attention-based temporal 
convolutional network (ATCN) model is used to obtain the Forex price forecasts. For both one-step and multi-step ahead 
forecasting, our proposed VMD-CEEMDAN-GRU-ATCN model has demonstrated superior and consistent performance 
in predicting USD/PKR exchange rate price series.
Keywords: Attention mechanism; Forex; dual decomposition strategy; hybrid deep learning models; temporal 
convolutional network

ABSTRAK

Pasaran pertukaran asing (Forex) telah banyak mempengaruhi pasaran kewangan global. Walaupun perdagangan 
Forex menawarkan prospek hasil yang besar kepada pelabur, beberapa risiko turut terlibat. Adalah mencabar untuk 
memodelkan siri masa kewangan dengan tepat kerana sifatnya yang tidak linear, tidak pegun dan hingar dengan 
hubungan yang tidak pasti dan tersembunyi. Oleh itu, membangunkan teknik ramalan yang sangat tepat adalah penting 
untuk pelabur dan pembuat keputusan. Kajian ini memperkenalkan model ramalan hibrid baru, VMD-CEEMDAN-GRU-
ATCN yang direka untuk meningkatkan ketepatan ramalan harga Forex. Sebagai permulaan, model cadangan kami 
menggunakan teknik penguraian model variasi (VMD) untuk memecahkan harga mentah kepada terma berbilang sub-
komponen dan sisa. Teknik penguraian mod empirik ensembel lengkap dengan hingar suai (CEEMDAN) digunakan untuk 
mengekstrak ciri daripada terma sisa yang melibatkan penguraian dan analisis lanjut bagi terma yang mengandungi 
maklumat yang kompleks ini. Sub-komponen ini kemudiannya diramalkan oleh model unit berulang berpagar (GRU). 
Untuk meningkatkan keberkesanan model hibrid ini, kami memasukkan harga terbuka, tinggi, rendah dan tertutup serta 
tujuh penunjuk teknikal pasaran Forex. Akhir sekali, model rangkaian konvolusi temporal berasaskan perhatian (ATCN) 
digunakan untuk mendapatkan ramalan harga Forex. Untuk ramalan selangkah dan berbilang langkah ke hadapan, 
model cadangan VMD-CEEMDAN-GRU-ATCN telah menunjukkan prestasi unggul dan tekal dalam meramalkan siri 
harga pertukaran USD/PKR.
Kata kunci: Forex; model pembelajaran mendalam hibrid; strategi penguraian dual; mekanisme perhatian; rangkaian 
konvolusi temporal 
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INTRODUCTION

Forecasting financial time series has grown crucial for 
the global economy due to its ability to predict economic 
gains and affect countries’ economic progress. As a result, 
academic researchers and business professionals are 
paying more attention to it due to its practical applications 
and theoretical possibilities. Unlike the stock market, 
the Forex market is extremely complex due to its 
nonlinearity, irregularity and high volatility. Additionally, 
the foreign exchange market is not governed by a single 
institution or organization, making it highly unpredictable 
and challenging to forecast. Therefore, predicting the 
Forex market is a particularly difficult problem. 

The two main categories of forecasting techniques 
are econometric techniques and models based on 
artificial intelligence (AI). AI-based methods like 
artificial neural networks (ANNs) and especially recurrent 
neural networks (RNNs) have been shown to be good 
at handling random and nonlinear time series data 
(Loureiro, Miguéis & da Silva 2018; Zhang et al. 2019). 
RNNs establish connections between hidden layer units, 
allowing for a better understanding of the dependencies 
between data at different time points, making them 
particularly well-suited for forecasting time series data 
(Deng, He & Zeng 2018). Long Short-Term Memory 
(LSTM) networks overcome the challenges that are 
commonly encountered when dealing with long time 
spans, including vanishing and exploding gradients, 
thus enhancing the performance of traditional RNNs. 
LSTM has gained widespread popularity for time series 
forecasting and has delivered exceptional results in recent 
times (Karevan & Suykens 2020). 

The GRU networks improve the performance of the 
LSTM model by combining the reset and update gates 
into a single three-gate mechanism. This improvement 
has led to the GRU outperforming the LSTM in various 
time series forecasting applications (Peng et al. 2020). 
While LSTM and GRU represent an advancement over 
RNNs, they still encounter some of the same challenges, 
including vanishing and exploding gradients, low training 
efficiency, and difficulty achieving good acceleration 
on GPUs, as noted by Hua and Zehao (2020). The TCN 
model was proposed by Bai, Kolter and Koltun (2018) 
as a response to these issues. The TCN model has a 
longer memory capacity than RNNs and is better suited 
for tasks involving long sequences. By reinforcing the 
impact of significant features on prediction results, the 
attention mechanism enhances the prediction accuracy 
of the model. It was first employed in deep learning for 

image processing to reduce redundant data and highlight 
important information, and it works well in various 
domains (Yujia et al. 2020). 

In deep learning, selecting input variables is critical 
for optimal performance. Researchers have utilized 
diverse features, such as technical indicators (TI), online 
data, refactored technical indicators and text sentiment 
analysis to forecast Forex prices. Yildirim, Toroslu and 
Fiore (2021) achieved good results in forecasting the 
direction of Forex data by training an LSTM model with 
two different macroeconomic and technical indicator 
data. Similarly, Hu, Zhao and Khushi (2021) found that 
deep learning models have been frequently used in Forex 
and stock price prediction due to their better performance 
and results. 

Researchers have come up with hybrid models that 
incorporate two or more different models to increase the 
precision of financial time series forecasting. Due to their 
greater performance than single models, these hybrid 
models have become prominent (Cao, Li & Li 2019). 
To extract the primary features of time series, various 
signal processing techniques, including empirical mode 
decomposition (EMD), complete ensemble empirical 
mode decomposition with adaptive noise (CEEMDAN), 
and variational modal decomposition (VMD), can be 
employed in the hybrid forecasting approach. The 
VMD has superior noise robustness and component 
decomposition accuracy compared to EMD, as Jun et al. 
(2017) demonstrated. 

Torres et al. (2011) introduced a CEEMDAN 
algorithm that avoids mode mixing of EMD by adding 
adaptive white noise. This method achieves better signal 
decomposition and reduces noise residuals with fewer 
averaging times, resulting in a minor reconstruction 
error. Cao, Li and Li (2019) developed a hybrid model 
that integrates CEEMDAN with LSTM and found that 
CEEMDAN achieved a more thorough decomposition 
than EMD, resulting in better performance in predicting 
stock price series. However, single decomposition 
techniques may not effectively handle the non-stationarity 
of random and irregular data series. Therefore, to 
improve Forex price predictions’ accuracy, this research 
suggests a two-phase decomposition strategy combined 
with a method based on deep learning. This study 
introduces a novel approach for predicting Forex prices 
by utilizing the VMD-CEEMDAN-GRU-ATCN model. A 
comparative empirical analysis of the USD/PKR dataset 
is carried out between the proposed VMD-CEEMDAN-
GRU-ATCN model and six additional benchmark models 
to evaluate the suggested approach’s effectiveness. 
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This paper presents three main contributions. First, 
a two-stage signal decomposition procedure is introduced 
for Forex price forecasting, which combines VMD and 
CEEMDAN techniques to extract complex features and 
patterns that are not easily visible in the original price 
sequence. This leads to a reduction in complexity and 
improved accuracy of price predictions. Second, the 
suggested method combines VMD, CEEMDAN, GRU, 
attention mechanism, and TCN to develop a novel hybrid 
approach to Forex forecasting. This approach employs 
GRU fitted values as input features and integrates an 
Attention mechanism into the TCN model to enhance 
the effect of important characteristics on predicting 
outcomes, leading to improved accuracy of forecasts. 
Finally, twelve predictors are utilized to obtain a 
comprehensive understanding of the Forex market, 
including technical indicators, fundamental market data 
and the fitted values of a GRU model on the closing 
price. Additionally, the proposed model is evaluated for 
forecasting one-step and five-step ahead and compared 
with multiple benchmark methods. 

The results of the study demonstrate the superior 
forecasting accuracy of the proposed approach across 
various evaluation metrics, suggesting its effectiveness 
and robustness for forecasting Forex prices.

MATERIALS AND METHODS

This section’s primary goal is to thoroughly review 
all the modules comprising the forecasting system, 
namely VMD, CEEMDAN, GRU, TCN, and the Attention 
mechanism; subsequently, the study outlines the 
fundamental framework of the proposed approach.

VARIATIONAL MODE DECOMPOSITION (VMD)

VMD is a signal-processing method that decomposes 
a real-valued signal f into K intrinsic mode functions 
(IMF) based on center frequency fluctuations wk. It was 
introduced by Dragomiretskiy and Zosso (2013) and 
utilized a multiresolution non-recursive variational 
structure that combines techniques such as the Hilbert 
transform, Wiener filtering, and Alternating Direction 
Method of Multipliers (ADMM). VMD involves solving 
variational problems, starting with a constrained problem 
for the input signal.

(1)

The k-th IMF with a restricted bandwidth is denoted 
by uk. The function’s partial derivative with respect to 
time t is represented by ∂(t), while Dirac distribution 
is denoted by δ(t). The imaginary unit is given by j, 
and the convolution is denoted by the * symbol. The 
introduction of α quadratic penalty function term a and 
a Lagrange multiplier λ is necessary to achieve the best 
possible solution for the constrained variational mode. 
This can be expressed as follows:

(2)

Next, the non-constrained variational problem 
is solved using the ADMM technique, which can be 
represented as follows:

(3)

(4)

The unconstrained variational problem can be 
resolved using ADMM, and iterative procedures yield 
the most suitable solution for the restricted variational 
model. The result is K modal components, each with a 
narrow bandwidth, breaking down the original signal.

COMPLETE ENSEMBLE EMPIRICAL MODE 
DECOMPOSITION WITH ADAPTIVE NOISE (CEEMDAN)

CEEMDAN is an algorithm that builds on EMD and EEMD 
concepts. It avoids mode mixing by incorporating 
adaptive white noise at each stage. This leads to a more 
comprehensive breakdown of signal data with minimal 
reconstruction errors, as fewer averaging times are needed 
to remove noise residuals. The decomposition steps of 
CEEMDAN are as follows:
Step 1 CEEMDAN uses noisy signals to decompose the 
original signal into N sub-experiments. It then calculates 
the average of the N sub-experiments to obtain the first 
intrinsic mode component (IMF1).

                                                                         (5)
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(2) 
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(6)

Step 2 After obtaining the first intrinsic mode component 
IMF1, the residual sequence r1 (t) is calculated, and a new 
𝑟𝑟1𝑖𝑖(t)  is obtained for each of the N sub-experiments. This 
process is repeated for each of the remaining intrinsic 
mode components until the EMD decomposition is 
completed.
                                                                                                        

  (7)

Step 3 From step 2, compute the average of the resulting 
second intrinsic mode components: 

(8)

Step 4 At the k+1 stage, the same procedure is repeated. 
The residual sequence rk(t) at this stage is calculated, and 
the IMFk+1th is obtained.
                                                                                                   

 (9)

(10)

 
Step 5 The above steps are iteratively repeated until the 
residual sequence has two or fewer extreme points. The 
EMD process is then finished, and the last intrinsic 
mode component IMFk and residual sequence R(t) 
are obtained. The original signal sequence x(t) can be 
expressed as the sum of the intrinsic mode components 
and the residual sequence, given by:
                                                                                            

    (11)                

GATED RECURRENT UNIT (GRU)

The GRU unit is comprised of three components: an 
update gate  zt, a reset gate rt, and a current memory 
content ℎ̂𝑡𝑡,  with the output ht being saved in the final 
memory of the GRU. The update gate zt determines the 
extent to which the input xt and previous output ht-1 
are transmitted to the next cell, and this is managed 
by the weight W(z). The reset gate, on the other hand, 
is responsible for determining how much of the past 

information should be disregarded. Meanwhile, the 
current memory content guarantees that only the pertinent 
information is transmitted to the next iteration, which is 
determined by the weight W. The following mathematical 
formulae regulate the GRU’s basic operations:

The intermediate values zt and rt are acquired from 
the update and reset gates, respectively. The hyperbolic 
tangent function, tanh, is utilized, as well as the sigmoid 
function, σ.

TEMPORAL CONVOLUTIONAL NETWORKS (TCN)

To improve its performance, the TCN neural network 
includes a number of approaches, including fully 
convolutional network, causal and dilated convolutions, 
and residual connections (Long, Shelhamer & Darrell 
2015). The architecture makes use of zero-padding and 
causal convolutions in order to preserve equal layer 
lengths and avoid information leakage. Longer-term 
dependencies are captured using dilated convolutions, 
and their formula is written as follows:

(12)

The * operation and dilation factor d are used in 
TCN to convolve x with a k-sized kernel. (s - d. i) refers 
to a sequence element s in the past direction. Expanding 
the receptive field by increasing the dilation factor 
enables the network to learn long-term dependencies and 
perform better on tasks involving sequence modeling. 
In deep learning, network degradation happens when 
the optimization process worsens as the network gets 
deeper. A residual block solves this by adding an extra 
pathway to adapt to identity mapping variations. It 
outputs O = Activation(x + F(x)),  where x is the input, 
F(x) is the residual mapping, and Activation is applied 
element-wise to the sum of the two. O combines the input 
and modified identity mapping.

TCN BASED ON ATTENTION MECHANISM (ATCN)

Inspired by the human brain’s visual attention, the 
attention mechanism assigns weights to a neural network’s 
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(6) 
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information should be disregarded. Meanwhile, the 
current memory content guarantees that only the pertinent 
information is transmitted to the next iteration, which is 
determined by the weight W. The following mathematical 
formulae regulate the GRU’s basic operations:

The intermediate values zt and rt are acquired from 
the update and reset gates, respectively. The hyperbolic 
tangent function, tanh, is utilized, as well as the sigmoid 
function, σ.

TEMPORAL CONVOLUTIONAL NETWORKS (TCN)

To improve its performance, the TCN neural network 
includes a number of approaches, including fully 
convolutional network, causal and dilated convolutions, 
and residual connections (Long, Shelhamer & Darrell 
2015). The architecture makes use of zero-padding and 
causal convolutions in order to preserve equal layer 
lengths and avoid information leakage. Longer-term 
dependencies are captured using dilated convolutions, 
and their formula is written as follows:

(12)

The * operation and dilation factor d are used in 
TCN to convolve x with a k-sized kernel. (s - d. i) refers 
to a sequence element s in the past direction. Expanding 
the receptive field by increasing the dilation factor 
enables the network to learn long-term dependencies and 
perform better on tasks involving sequence modeling. 
In deep learning, network degradation happens when 
the optimization process worsens as the network gets 
deeper. A residual block solves this by adding an extra 
pathway to adapt to identity mapping variations. It 
outputs O = Activation(x + F(x)),  where x is the input, 
F(x) is the residual mapping, and Activation is applied 
element-wise to the sum of the two. O combines the input 
and modified identity mapping.

TCN BASED ON ATTENTION MECHANISM (ATCN)

Inspired by the human brain’s visual attention, the 
attention mechanism assigns weights to a neural network’s 

output to emphasize important features. During training, 
the mechanism can selectively filter crucial features by 
increasing their weight and reducing less relevant ones. 
The TCN model has four main components: input layer, 
TCN module, attention mechanism, and output layer. 
They work together to process input data and generate 
the desired output. The next sections explain each 
component in detail.

Input layer: The input layer of the model is responsible 
for receiving the preprocessed original data, which is 
represented as a matrix with H time steps and L features. 
It is denoted as IH × L

TCN block: The TCN network used in the study comprises 
two TCN modules. Upon feeding the original sequence I 
as input, the f filter is processed by a Conv1D layer to 
generate the initial matrix of size H × L × F. The two 
TCN modules’ respective convolution kernel widths are 
64, 64, and 64, and their respective dilation factors are 
1, 2, 4, 8, 16, and 32.

Attention mechanism: To enhance the TCN’s ability 
to learn key features, an attention model is embedded 
between the two TCN hidden layers, which automatically 
assigns more attention weights to the hidden states that 
affect the prediction target. 

Output layer: The output layer receives the output 
values after they have been extracted from the attention 
mechanism. The output layer uses a dense layer to 
lower the matrix’s L-dimension and the resulting output 
sequence O represents the predicted values for the input 
sequence.

THE ARCHITECTURE AND WORKFLOW OF THE 
PROPOSED APPROACH

This study proposes a new method for predicting 
Forex prices, which integrates VMD, CEEMD, GRU, 
and ATCN techniques. This approach is referred to as 
VMD-CEEMDAN-GRU-ATCN. The suggested method’s 
workflow is shown in Figure 1 and includes the following 
steps:
Step 1 Using the VMD decomposition method, the 
original time series is divided into individual mode 
components or VMFs. The residual series is subsequently 
generated by subtracting these VMFs from the original 
sequence.

Step 2 A two-stage decomposition process is carried out, 
involving the application of the CEEMDAN technique 
on the residual series. This step leads to the generation 
of a new set of subseries of residuals referred as IMFs.

Step 3 The GRU model is utilized to predict the modal 
components produced through decomposing the initial 
series and the residual term decomposition, which 
together form a set 
of predictors.

Step 4 The final input matrix is formed by combining 
the open, high, low, and close (OHLC) prices, technical 
indicators, and the aggregate of outputs from all the 
sub-models. This new input matrix is then utilized for 
training the ATCN model, which generates the final 
forecasted results. 

DATA DESCRIPTION AND EVALUATION CRITERIA

In this study, daily price data of USD/PKR are used to 
assess the effectiveness of the proposed hybrid model. 
Historical OHLC data from March 4, 1992, to February 
20, 2023, are collected from (https://www.investing.
com/). The plot in Figure 2 illustrates the daily USD/PKR 
prices, indicating a noticeable irregular and unstable 
pattern in the time series.

Additionally, various technical indicators, 
including Simple moving average (SMA), Momentum, 
Relative strength index (RSI), Average true range (ATR), 
Moving average convergence divergence (MACD) and 
Bollinger bands (BB) are computed using the closing 
price and appended as new features to the dataset. This 
work employs seven technical indicators, and their 
specific details are summarized in Table 1.

The USD/PKR price dataset is split into training 
and test datasets at an 80%-20% ratio. Neural networks 
typically require processed data to perform effectively.  
Standardizing the data involves scaling it to a specific 
range. This study uses the min-max standardization 
method to preprocess the data, as shown by the 
expression.

(13)

The formula shown in Equation (13) calculates the 
standardized subseries data, denoted by 
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, from the 
original feature data represented by X. In the original 
sequence, Xmin indicates the lowest number and Xmax the 
highest.
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We utilized a VMD technique to identify the 
stationary features of USD/PKR exchange rates by 
analyzing the closing price time series. The resulting 
VMD decomposition is then used to subtract the sum 
of each mode component from the original sequence, 
producing a residual sequence. However, accurately 
predicting this complex residual sequence using a 
predictive algorithm is challenging. We adopted a 
secondary decomposition technique called CEEMDAN 
technology to gain more insight into extracting 
additional information from the residual series. Figure 
3 illustrates the decomposition process of the USD/PKR 
price sequence.

In Figure 3 (left), the VMD-generated subseries 
are shown in low to high frequency, illustrating distinct 
local oscillations present in the data. These decomposed 
subseries appear to be smoother and more regular than 
the original series, leading to a reduction in dataset 
complexity for forecasting purposes. Notably, the 
subseries with high frequency components feature 
relatively small values, indicating short-term volatility 
in the original price series. On the other hand, the low 
frequency components have large values and represent 
overall changes in the daily closing prices. Additionally, 
the right side of Figure 3 illustrates the secondary 
decomposition outcomes of the residual term utilizing 
CEEMDAN.

To conduct a quantitative analysis of prediction 
performance, evaluation indicators such as the mean 

absolute error (MAE), symmetric mean absolute 
percentage error (SMAPE), root mean square error 
(RMSE) and mean absolute percentage error (MAPE) 
are used. These evaluation measures’ formulas are shown 
in Table 2.

DIEBOLD-MARIANO (DM) TEST

The DM test is used to assess whether the hybrid 
approach has a statistically significant predictive 
accuracy compared to other models (Diebold & 
Mariano 2002). This test is widely used in research 
applications and involves testing the null hypothesis 
(Ho) that the expected loss from prediction errors for 
two methods (𝑒𝑒𝑡𝑡1 and 𝑒𝑒𝑡𝑡2)  and 𝑒𝑒𝑡𝑡1 and 𝑒𝑒𝑡𝑡2) are equal. The alternative 
hypothesis (H1) suggests a notable difference between 
the two methods. The test statistics are defined based 
on this alternative hypothesis.

where λ2 represents the estimated variance of 
[𝐿𝐿(𝑒𝑒𝑡𝑡1) − 𝐿𝐿(𝑒𝑒𝑡𝑡2)]. . To determine whether to reject the null 
hypothesis, compare the values of | DM | and | zα/2 |. If | DM|  
exceeds | zα/2  |, it indicates a significant difference in the 
prediction abilities of the two models. Conversely, if | DM|  
is less than or equal to | zα/2 |, the prediction capabilities 
of the two models are not significantly different.
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FIGURE 1. The process of VMD-CEEMDAN-GRU-ATCN model
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absolute error (MAE), symmetric mean absolute 
percentage error (SMAPE), root mean square error 
(RMSE) and mean absolute percentage error (MAPE) 
are used. These evaluation measures’ formulas are shown 
in Table 2.

DIEBOLD-MARIANO (DM) TEST

The DM test is used to assess whether the hybrid 
approach has a statistically significant predictive 
accuracy compared to other models (Diebold & 
Mariano 2002). This test is widely used in research 
applications and involves testing the null hypothesis 
(Ho) that the expected loss from prediction errors for 
two methods (𝑒𝑒𝑡𝑡1 and 𝑒𝑒𝑡𝑡2)  and 𝑒𝑒𝑡𝑡1 and 𝑒𝑒𝑡𝑡2) are equal. The alternative 
hypothesis (H1) suggests a notable difference between 
the two methods. The test statistics are defined based 
on this alternative hypothesis.

where λ2 represents the estimated variance of 
[𝐿𝐿(𝑒𝑒𝑡𝑡1) − 𝐿𝐿(𝑒𝑒𝑡𝑡2)]. . To determine whether to reject the null 
hypothesis, compare the values of | DM | and | zα/2 |. If | DM|  
exceeds | zα/2  |, it indicates a significant difference in the 
prediction abilities of the two models. Conversely, if | DM|  
is less than or equal to | zα/2 |, the prediction capabilities 
of the two models are not significantly different.

TABLE 1. A summary of the technical indicators, along with their formulas and descriptions

Technical indicators Formulas Description

Simple n-day moving average 
(SMA)

It computes the mean price 
values during a specific 
timeframe

Momentum It depicts the rate of change in 
pricing

Moving average convergence 
divergence (MACD)

It’s a momentum indicator that 
follows the trend and illustrates 
the correlation between two 
moving averages

Rate of change (ROC) It calculates the percentage 
difference between the price 
at the moment in time and the 
previous price value

Average true range (ATR) It reflects the level of market 
volatility

Relative strength index (RSI) In order to determine if a price 
is overbought or oversold, it 
evaluates the size of recent price 
fluctuations

Bollinger bands (BB) It establishes a series of 
trendlines that are plotted at 
specific standard deviations 
from the simple moving average 
(SMA) of the price

At time t, Ct represents the closing price, Lt represents the low price, and Ht  represents the high price. The difference between the exponential moving averages (EMAs) 
of time periods 12 and 26 is represented by DIFFt. Upward price changes are represented by UPt, while downward price changes are represented by DWt. The standard 
deviation is denoted by SD. The absolute value of a number is represented by the vertical bars |…|

FIGURE 2. The temporal sequence of USD against PKR prices

Technical indicators Formulas Description 

Simple n-day moving average 

(SMA) 
𝐶𝐶𝑡𝑡 + 𝐶𝐶𝑡𝑡−1 +⋯+ 𝐶𝐶𝑡𝑡−𝑛𝑛−1

𝑛𝑛  

It computes the mean price 

values during a specific 

timeframe 

Momentum 
𝐶𝐶𝑡𝑡 − 𝐶𝐶𝑡𝑡−(𝑛𝑛−1) 

It depicts the rate of change 

in pricing 

Moving average convergence 

divergence (MACD)  

𝑀𝑀𝑀𝑀𝐶𝐶𝑀𝑀(𝑛𝑛)𝑡𝑡−1 +
2

𝑛𝑛+1 × (𝑀𝑀𝐷𝐷𝐷𝐷𝐷𝐷𝑡𝑡 − 𝑀𝑀𝑀𝑀𝐶𝐶𝑀𝑀(𝑛𝑛)𝑡𝑡−1) 

It’s a momentum indicator 

that follows the trend and 

illustrates the correlation 

between two moving 

averages 

Rate of change (ROC) 

(𝐶𝐶𝑡𝑡 − 𝐶𝐶𝑡𝑡−𝑛𝑛)
𝐶𝐶𝑡𝑡−𝑛𝑛

× 100 

It calculates the percentage 

difference between the price 

at the moment in time and 

the previous price value 

Average true range (ATR) 

𝐸𝐸𝑀𝑀𝑀𝑀𝑛𝑛(max(𝐻𝐻𝑡𝑡 − 𝐿𝐿𝑡𝑡), |𝐻𝐻𝑡𝑡 − 𝐶𝐶𝑡𝑡−1|, |𝐿𝐿𝑡𝑡 − 𝐶𝐶𝑡𝑡−1|) 
It reflects the level of 

market volatility 

 

Relative strength index (RSI) 

100 − 100

1 + (∑ 𝑈𝑈𝑈𝑈𝑡𝑡−𝑖𝑖𝑛𝑛−1
𝑖𝑖=0

𝑛𝑛 ) / (∑ 𝑀𝑀𝐷𝐷𝑡𝑡−𝑖𝑖
𝑛𝑛−1
𝑖𝑖=0

𝑛𝑛 )
 

In order to determine if a 

price is overbought or 

oversold, it evaluates the 

size of recent price 

fluctuations 

Bollinger bands (BB) 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑛𝑛𝑀𝑀 = 𝑆𝑆𝑀𝑀𝑀𝑀(𝐶𝐶𝑀𝑀𝐶𝐶𝐶𝐶𝑀𝑀, 𝑡𝑡) 
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It establishes a series of 

trendlines that are plotted at 

specific standard deviations 

from the simple moving 

average (SMA) of the price 
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oversold, it evaluates the 

size of recent price 

fluctuations 

Bollinger bands (BB) 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑛𝑛𝑀𝑀 = 𝑆𝑆𝑀𝑀𝑀𝑀(𝐶𝐶𝑀𝑀𝐶𝐶𝐶𝐶𝑀𝑀, 𝑡𝑡) 
𝑈𝑈𝑈𝑈𝑈𝑈𝑀𝑀𝑈𝑈𝑀𝑀𝑀𝑀𝑛𝑛𝑀𝑀 = 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑛𝑛𝑀𝑀 + 𝑆𝑆𝑀𝑀(𝐶𝐶𝑀𝑀𝐶𝐶𝐶𝐶𝑀𝑀, 𝑡𝑡) ∗ 2 

𝐿𝐿𝐶𝐶𝐿𝐿𝑀𝑀𝑈𝑈𝑀𝑀𝑀𝑀𝑛𝑛𝑀𝑀 = 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑛𝑛𝑀𝑀 − 𝑆𝑆𝑀𝑀(𝐶𝐶𝑀𝑀𝐶𝐶𝐶𝐶𝑀𝑀, 𝑡𝑡) ∗ 2 

It establishes a series of 

trendlines that are plotted at 

specific standard deviations 

from the simple moving 

average (SMA) of the price 

 

Technical indicators Formulas Description 

Simple n-day moving average 

(SMA) 
𝐶𝐶𝑡𝑡 + 𝐶𝐶𝑡𝑡−1 +⋯+ 𝐶𝐶𝑡𝑡−𝑛𝑛−1

𝑛𝑛  

It computes the mean price 

values during a specific 

timeframe 

Momentum 
𝐶𝐶𝑡𝑡 − 𝐶𝐶𝑡𝑡−(𝑛𝑛−1) 

It depicts the rate of change 

in pricing 

Moving average convergence 

divergence (MACD)  

𝑀𝑀𝑀𝑀𝐶𝐶𝑀𝑀(𝑛𝑛)𝑡𝑡−1 +
2

𝑛𝑛+1 × (𝑀𝑀𝐷𝐷𝐷𝐷𝐷𝐷𝑡𝑡 − 𝑀𝑀𝑀𝑀𝐶𝐶𝑀𝑀(𝑛𝑛)𝑡𝑡−1) 

It’s a momentum indicator 

that follows the trend and 

illustrates the correlation 

between two moving 

averages 

Rate of change (ROC) 

(𝐶𝐶𝑡𝑡 − 𝐶𝐶𝑡𝑡−𝑛𝑛)
𝐶𝐶𝑡𝑡−𝑛𝑛

× 100 

It calculates the percentage 

difference between the price 

at the moment in time and 

the previous price value 

Average true range (ATR) 

𝐸𝐸𝑀𝑀𝑀𝑀𝑛𝑛(max(𝐻𝐻𝑡𝑡 − 𝐿𝐿𝑡𝑡), |𝐻𝐻𝑡𝑡 − 𝐶𝐶𝑡𝑡−1|, |𝐿𝐿𝑡𝑡 − 𝐶𝐶𝑡𝑡−1|) 
It reflects the level of 

market volatility 

 

Relative strength index (RSI) 

100 − 100

1 + (∑ 𝑈𝑈𝑈𝑈𝑡𝑡−𝑖𝑖𝑛𝑛−1
𝑖𝑖=0

𝑛𝑛 ) / (∑ 𝑀𝑀𝐷𝐷𝑡𝑡−𝑖𝑖
𝑛𝑛−1
𝑖𝑖=0

𝑛𝑛 )
 

In order to determine if a 

price is overbought or 

oversold, it evaluates the 

size of recent price 

fluctuations 

Bollinger bands (BB) 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑛𝑛𝑀𝑀 = 𝑆𝑆𝑀𝑀𝑀𝑀(𝐶𝐶𝑀𝑀𝐶𝐶𝐶𝐶𝑀𝑀, 𝑡𝑡) 
𝑈𝑈𝑈𝑈𝑈𝑈𝑀𝑀𝑈𝑈𝑀𝑀𝑀𝑀𝑛𝑛𝑀𝑀 = 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑛𝑛𝑀𝑀 + 𝑆𝑆𝑀𝑀(𝐶𝐶𝑀𝑀𝐶𝐶𝐶𝐶𝑀𝑀, 𝑡𝑡) ∗ 2 

𝐿𝐿𝐶𝐶𝐿𝐿𝑀𝑀𝑈𝑈𝑀𝑀𝑀𝑀𝑛𝑛𝑀𝑀 = 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑛𝑛𝑀𝑀 − 𝑆𝑆𝑀𝑀(𝐶𝐶𝑀𝑀𝐶𝐶𝐶𝐶𝑀𝑀, 𝑡𝑡) ∗ 2 

It establishes a series of 

trendlines that are plotted at 

specific standard deviations 

from the simple moving 

average (SMA) of the price 

 

Technical indicators Formulas Description 

Simple n-day moving average 

(SMA) 
𝐶𝐶𝑡𝑡 + 𝐶𝐶𝑡𝑡−1 +⋯+ 𝐶𝐶𝑡𝑡−𝑛𝑛−1

𝑛𝑛  

It computes the mean price 

values during a specific 

timeframe 

Momentum 
𝐶𝐶𝑡𝑡 − 𝐶𝐶𝑡𝑡−(𝑛𝑛−1) 

It depicts the rate of change 

in pricing 

Moving average convergence 

divergence (MACD)  

𝑀𝑀𝑀𝑀𝐶𝐶𝑀𝑀(𝑛𝑛)𝑡𝑡−1 +
2

𝑛𝑛+1 × (𝑀𝑀𝐷𝐷𝐷𝐷𝐷𝐷𝑡𝑡 − 𝑀𝑀𝑀𝑀𝐶𝐶𝑀𝑀(𝑛𝑛)𝑡𝑡−1) 

It’s a momentum indicator 

that follows the trend and 

illustrates the correlation 

between two moving 

averages 

Rate of change (ROC) 

(𝐶𝐶𝑡𝑡 − 𝐶𝐶𝑡𝑡−𝑛𝑛)
𝐶𝐶𝑡𝑡−𝑛𝑛

× 100 

It calculates the percentage 

difference between the price 

at the moment in time and 

the previous price value 

Average true range (ATR) 

𝐸𝐸𝑀𝑀𝑀𝑀𝑛𝑛(max(𝐻𝐻𝑡𝑡 − 𝐿𝐿𝑡𝑡), |𝐻𝐻𝑡𝑡 − 𝐶𝐶𝑡𝑡−1|, |𝐿𝐿𝑡𝑡 − 𝐶𝐶𝑡𝑡−1|) 
It reflects the level of 

market volatility 

 

Relative strength index (RSI) 

100 − 100

1 + (∑ 𝑈𝑈𝑈𝑈𝑡𝑡−𝑖𝑖𝑛𝑛−1
𝑖𝑖=0

𝑛𝑛 ) / (∑ 𝑀𝑀𝐷𝐷𝑡𝑡−𝑖𝑖
𝑛𝑛−1
𝑖𝑖=0

𝑛𝑛 )
 

In order to determine if a 

price is overbought or 

oversold, it evaluates the 

size of recent price 

fluctuations 

Bollinger bands (BB) 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑛𝑛𝑀𝑀 = 𝑆𝑆𝑀𝑀𝑀𝑀(𝐶𝐶𝑀𝑀𝐶𝐶𝐶𝐶𝑀𝑀, 𝑡𝑡) 
𝑈𝑈𝑈𝑈𝑈𝑈𝑀𝑀𝑈𝑈𝑀𝑀𝑀𝑀𝑛𝑛𝑀𝑀 = 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑛𝑛𝑀𝑀 + 𝑆𝑆𝑀𝑀(𝐶𝐶𝑀𝑀𝐶𝐶𝐶𝐶𝑀𝑀, 𝑡𝑡) ∗ 2 

𝐿𝐿𝐶𝐶𝐿𝐿𝑀𝑀𝑈𝑈𝑀𝑀𝑀𝑀𝑛𝑛𝑀𝑀 = 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑛𝑛𝑀𝑀 − 𝑆𝑆𝑀𝑀(𝐶𝐶𝑀𝑀𝐶𝐶𝐶𝐶𝑀𝑀, 𝑡𝑡) ∗ 2 

It establishes a series of 

trendlines that are plotted at 

specific standard deviations 

from the simple moving 

average (SMA) of the price 

 

Technical indicators Formulas Description 

Simple n-day moving average 

(SMA) 
𝐶𝐶𝑡𝑡 + 𝐶𝐶𝑡𝑡−1 +⋯+ 𝐶𝐶𝑡𝑡−𝑛𝑛−1

𝑛𝑛  

It computes the mean price 

values during a specific 

timeframe 

Momentum 
𝐶𝐶𝑡𝑡 − 𝐶𝐶𝑡𝑡−(𝑛𝑛−1) 

It depicts the rate of change 

in pricing 

Moving average convergence 

divergence (MACD)  

𝑀𝑀𝑀𝑀𝐶𝐶𝑀𝑀(𝑛𝑛)𝑡𝑡−1 +
2

𝑛𝑛+1 × (𝑀𝑀𝐷𝐷𝐷𝐷𝐷𝐷𝑡𝑡 − 𝑀𝑀𝑀𝑀𝐶𝐶𝑀𝑀(𝑛𝑛)𝑡𝑡−1) 

It’s a momentum indicator 

that follows the trend and 

illustrates the correlation 

between two moving 

averages 

Rate of change (ROC) 

(𝐶𝐶𝑡𝑡 − 𝐶𝐶𝑡𝑡−𝑛𝑛)
𝐶𝐶𝑡𝑡−𝑛𝑛

× 100 

It calculates the percentage 

difference between the price 

at the moment in time and 

the previous price value 

Average true range (ATR) 

𝐸𝐸𝑀𝑀𝑀𝑀𝑛𝑛(max(𝐻𝐻𝑡𝑡 − 𝐿𝐿𝑡𝑡), |𝐻𝐻𝑡𝑡 − 𝐶𝐶𝑡𝑡−1|, |𝐿𝐿𝑡𝑡 − 𝐶𝐶𝑡𝑡−1|) 
It reflects the level of 

market volatility 

 

Relative strength index (RSI) 

100 − 100

1 + (∑ 𝑈𝑈𝑈𝑈𝑡𝑡−𝑖𝑖𝑛𝑛−1
𝑖𝑖=0

𝑛𝑛 ) / (∑ 𝑀𝑀𝐷𝐷𝑡𝑡−𝑖𝑖
𝑛𝑛−1
𝑖𝑖=0

𝑛𝑛 )
 

In order to determine if a 

price is overbought or 

oversold, it evaluates the 

size of recent price 

fluctuations 

Bollinger bands (BB) 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑛𝑛𝑀𝑀 = 𝑆𝑆𝑀𝑀𝑀𝑀(𝐶𝐶𝑀𝑀𝐶𝐶𝐶𝐶𝑀𝑀, 𝑡𝑡) 
𝑈𝑈𝑈𝑈𝑈𝑈𝑀𝑀𝑈𝑈𝑀𝑀𝑀𝑀𝑛𝑛𝑀𝑀 = 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑛𝑛𝑀𝑀 + 𝑆𝑆𝑀𝑀(𝐶𝐶𝑀𝑀𝐶𝐶𝐶𝐶𝑀𝑀, 𝑡𝑡) ∗ 2 

𝐿𝐿𝐶𝐶𝐿𝐿𝑀𝑀𝑈𝑈𝑀𝑀𝑀𝑀𝑛𝑛𝑀𝑀 = 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑛𝑛𝑀𝑀 − 𝑆𝑆𝑀𝑀(𝐶𝐶𝑀𝑀𝐶𝐶𝐶𝐶𝑀𝑀, 𝑡𝑡) ∗ 2 

It establishes a series of 

trendlines that are plotted at 

specific standard deviations 

from the simple moving 

average (SMA) of the price 

 

Technical indicators Formulas Description 

Simple n-day moving average 

(SMA) 
𝐶𝐶𝑡𝑡 + 𝐶𝐶𝑡𝑡−1 +⋯+ 𝐶𝐶𝑡𝑡−𝑛𝑛−1

𝑛𝑛  

It computes the mean price 

values during a specific 

timeframe 

Momentum 
𝐶𝐶𝑡𝑡 − 𝐶𝐶𝑡𝑡−(𝑛𝑛−1) 

It depicts the rate of change 

in pricing 

Moving average convergence 

divergence (MACD)  

𝑀𝑀𝑀𝑀𝐶𝐶𝑀𝑀(𝑛𝑛)𝑡𝑡−1 +
2

𝑛𝑛+1 × (𝑀𝑀𝐷𝐷𝐷𝐷𝐷𝐷𝑡𝑡 − 𝑀𝑀𝑀𝑀𝐶𝐶𝑀𝑀(𝑛𝑛)𝑡𝑡−1) 

It’s a momentum indicator 

that follows the trend and 

illustrates the correlation 

between two moving 

averages 

Rate of change (ROC) 

(𝐶𝐶𝑡𝑡 − 𝐶𝐶𝑡𝑡−𝑛𝑛)
𝐶𝐶𝑡𝑡−𝑛𝑛

× 100 

It calculates the percentage 

difference between the price 

at the moment in time and 

the previous price value 

Average true range (ATR) 

𝐸𝐸𝑀𝑀𝑀𝑀𝑛𝑛(max(𝐻𝐻𝑡𝑡 − 𝐿𝐿𝑡𝑡), |𝐻𝐻𝑡𝑡 − 𝐶𝐶𝑡𝑡−1|, |𝐿𝐿𝑡𝑡 − 𝐶𝐶𝑡𝑡−1|) 
It reflects the level of 

market volatility 

 

Relative strength index (RSI) 

100 − 100

1 + (∑ 𝑈𝑈𝑈𝑈𝑡𝑡−𝑖𝑖𝑛𝑛−1
𝑖𝑖=0

𝑛𝑛 ) / (∑ 𝑀𝑀𝐷𝐷𝑡𝑡−𝑖𝑖
𝑛𝑛−1
𝑖𝑖=0

𝑛𝑛 )
 

In order to determine if a 

price is overbought or 

oversold, it evaluates the 

size of recent price 

fluctuations 

Bollinger bands (BB) 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑛𝑛𝑀𝑀 = 𝑆𝑆𝑀𝑀𝑀𝑀(𝐶𝐶𝑀𝑀𝐶𝐶𝐶𝐶𝑀𝑀, 𝑡𝑡) 
𝑈𝑈𝑈𝑈𝑈𝑈𝑀𝑀𝑈𝑈𝑀𝑀𝑀𝑀𝑛𝑛𝑀𝑀 = 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑛𝑛𝑀𝑀 + 𝑆𝑆𝑀𝑀(𝐶𝐶𝑀𝑀𝐶𝐶𝐶𝐶𝑀𝑀, 𝑡𝑡) ∗ 2 

𝐿𝐿𝐶𝐶𝐿𝐿𝑀𝑀𝑈𝑈𝑀𝑀𝑀𝑀𝑛𝑛𝑀𝑀 = 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑛𝑛𝑀𝑀 − 𝑆𝑆𝑀𝑀(𝐶𝐶𝑀𝑀𝐶𝐶𝐶𝐶𝑀𝑀, 𝑡𝑡) ∗ 2 

It establishes a series of 

trendlines that are plotted at 

specific standard deviations 

from the simple moving 

average (SMA) of the price 

 

Technical indicators Formulas Description 

Simple n-day moving average 

(SMA) 
𝐶𝐶𝑡𝑡 + 𝐶𝐶𝑡𝑡−1 +⋯+ 𝐶𝐶𝑡𝑡−𝑛𝑛−1

𝑛𝑛  

It computes the mean price 

values during a specific 

timeframe 

Momentum 
𝐶𝐶𝑡𝑡 − 𝐶𝐶𝑡𝑡−(𝑛𝑛−1) 

It depicts the rate of change 

in pricing 

Moving average convergence 

divergence (MACD)  

𝑀𝑀𝑀𝑀𝐶𝐶𝑀𝑀(𝑛𝑛)𝑡𝑡−1 +
2

𝑛𝑛+1 × (𝑀𝑀𝐷𝐷𝐷𝐷𝐷𝐷𝑡𝑡 − 𝑀𝑀𝑀𝑀𝐶𝐶𝑀𝑀(𝑛𝑛)𝑡𝑡−1) 

It’s a momentum indicator 

that follows the trend and 

illustrates the correlation 

between two moving 

averages 

Rate of change (ROC) 

(𝐶𝐶𝑡𝑡 − 𝐶𝐶𝑡𝑡−𝑛𝑛)
𝐶𝐶𝑡𝑡−𝑛𝑛

× 100 

It calculates the percentage 

difference between the price 

at the moment in time and 

the previous price value 

Average true range (ATR) 

𝐸𝐸𝑀𝑀𝑀𝑀𝑛𝑛(max(𝐻𝐻𝑡𝑡 − 𝐿𝐿𝑡𝑡), |𝐻𝐻𝑡𝑡 − 𝐶𝐶𝑡𝑡−1|, |𝐿𝐿𝑡𝑡 − 𝐶𝐶𝑡𝑡−1|) 
It reflects the level of 

market volatility 

 

Relative strength index (RSI) 

100 − 100

1 + (∑ 𝑈𝑈𝑈𝑈𝑡𝑡−𝑖𝑖𝑛𝑛−1
𝑖𝑖=0

𝑛𝑛 ) / (∑ 𝑀𝑀𝐷𝐷𝑡𝑡−𝑖𝑖
𝑛𝑛−1
𝑖𝑖=0

𝑛𝑛 )
 

In order to determine if a 

price is overbought or 

oversold, it evaluates the 

size of recent price 

fluctuations 

Bollinger bands (BB) 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑛𝑛𝑀𝑀 = 𝑆𝑆𝑀𝑀𝑀𝑀(𝐶𝐶𝑀𝑀𝐶𝐶𝐶𝐶𝑀𝑀, 𝑡𝑡) 
𝑈𝑈𝑈𝑈𝑈𝑈𝑀𝑀𝑈𝑈𝑀𝑀𝑀𝑀𝑛𝑛𝑀𝑀 = 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑛𝑛𝑀𝑀 + 𝑆𝑆𝑀𝑀(𝐶𝐶𝑀𝑀𝐶𝐶𝐶𝐶𝑀𝑀, 𝑡𝑡) ∗ 2 

𝐿𝐿𝐶𝐶𝐿𝐿𝑀𝑀𝑈𝑈𝑀𝑀𝑀𝑀𝑛𝑛𝑀𝑀 = 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑛𝑛𝑀𝑀 − 𝑆𝑆𝑀𝑀(𝐶𝐶𝑀𝑀𝐶𝐶𝐶𝐶𝑀𝑀, 𝑡𝑡) ∗ 2 

It establishes a series of 

trendlines that are plotted at 

specific standard deviations 

from the simple moving 

average (SMA) of the price 
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TABLE 2. Relevant evaluation indicators

Evaluation metrics Definition Equation

MAE Mean absolute error

MAPE Mean absolute percentage 
error

RMSE Root mean square error

SMAPE Symmetric mean absolute 
percentage error

The variable yi represents the original time series, while  �̅�𝑦𝑖𝑖   �̂�𝑦𝑖𝑖  denotes its average value. The predicted time series, computed from the model, 
is represented by �̅�𝑦𝑖𝑖   �̂�𝑦𝑖𝑖 . The total number of observations is denoted by n

FIGURE 3. The decomposition of the prices via VMD decomposition (left) 
and the decomposition of the residuals via CEEMDAN (right)
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RESULTS AND DISCUSSION

To demonstrate the VMD-CEEMDAN-GRU-ATCN model’s 
improved performance in practical applications, this 
study compares it with six different benchmark models, 
namely GRU-ATCN, VMD-GRU-ATCN, CEEMDAN-
GRU-ATCN, VMD-LSTM-ATCN, VMD-CEEMDAN-
GRU-ALSTM, VMD-CEEMDAN-GRU-ATCN (without 

(w/o) TI), and VMD-CEEMDAN-GRU-ATCN (with 
TI). Furthermore, both one-step and five-step ahead 
predictions are made in order to test the model’s 
robustness. Specifically, we use the data from the first 
ten trading days to predict the 11th and 15th trading days.

Table 3 displays the prediction outcomes of USD/
PKR Forex prices. The experimental results indicate that 
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the proposed VMD-CEEMDAN-GRU-ATCN hybrid model 
in this study outperforms all the other benchmark models 
in all the evaluated scenarios.

By examining Table 3, a notable difference 
be tween  the hybrid models incorporating the 
decomposition method (VMD-GRU-ATCN, CEEMDAN-
GRU-ATCN) and without the decomposition method 
(GRU-ATCN) becomes apparent. It is evident that those 
incorporating the decomposition technique have shown 
substantial enhancements in all evaluation metrics when 
compared to the GRU-ATCN model. Furthermore, when 
analyzing the models using the decomposition method 
separately, it is observed that the prediction results 
of VMD-GRU-ATCN exhibit better evaluation indices 
compared to those of CEEMDAN-GRU-ATCN. Therefore, 
the VMD decomposition technique is a more powerful 
tool for analyzing intricate time series, especially 
Forex prices, and has been shown to accurately extract 
important features from the data. 

Moreover, Table 3 demonstrates that in terms 
of forecasting accuracy, the VMD-GRU-ATCN model 
performs better than the VMD-LSTM-ATCN model, as 
evidenced by its lower MAE values of 4.05746 in one-
step and 4.81123 in five-step ahead forecasting. This 
indicates that the VMD-GRU-ATCN model has superior 
forecasting performance compared to the VMD-LSTM-
ATCN model. 

Table 3 also demonstrates that using secondary 
decomposition models leads to better forecasting results 
than single decomposition models. The effectiveness of 
the secondary decomposition technique in enhancing 
the forecasting performance of single decomposition 
models is clear when comparing VMD-CEEMDAN-GRU-
ALSTM with VMD-GRU-ATCN and CEEMDAN-GRU-
ATCN. The low MAE values of 3.51185 and 4.01279 
in one-step and five-step forecasting, respectively, 
demonstrate the VMD-CEEMDAN-GRU-ALSTM model’s 
exceptional predicting performance.

Between the VMD-CEEMDAN-GRU-ATCN and 
VMD-CEEMDAN-GRU-ALSTM models ,  Table 3 
clearly contrasts their performance, with the former 
demonstrating substantially better results. Its low MAE 
values of 3.30695 and 3.34693 in one-step and five-step 
forecasting, respectively, indicate excellent forecasting 
performance. To assess the impact of technical indicators 
on the hybrid model’s performance, we can compare the 
VMD-CEEMDAN-GRU-ATCN model with and without 
TIs. By doing so, we can conclude that our developed 
approach outperforms the benchmark model by a 
significant margin. This improvement is particularly 
noteworthy when fundamental market data is the only 

input, as demonstrated by the MAE values of 7.32954 
and 8.62458 for one and five-step ahead, respectively. 
However, incorporating TIs into the input data results in 
a substantial enhancement of the model’s performance.

Figure 4 depicts the forecasting errors, including 
MAE, MAPE, SMAPE, and RMSE, for all models 
considered. According to the figure, the models that 
use the secondary decomposition strategy perform 
better than the ones that use the single decomposition 
strategy and models that do not incorporate any 
decomposition. This is evident from the lower values of 
forecasting errors for the models utilizing the secondary 
decomposition strategy, demonstrating their greater 
prediction ability compared to the other models taken 
into account. 

Figure 5 presents the prediction results of GRU-
ATCN, VMD-GRU-ATCN, VMD-CEEMDAN-GRU-ATCN, 
and VMD-CEEMDAN-GRU-ATCN (without TIs) on the 
USD/PKR test data. It is evident that all the models 
are able to capture the overall changing trend of the 
exchange rate, indicating the strong capability of deep 
learning models to extract the underlying relationship 
of the Forex time series. However, it is noticeable that 
the VMD-CEEMDAN-GRU-ATCN model provided the 
closest prediction results to the actual exchange rate 
price series.

Furthermore, Figures 4 and 5 illustrate a decline 
in the predictive performance of all the models as 
the forecasting horizon increases. The increasing 
complexity and instability of the Forex price series as 
the forecasting horizon expands could be the main reason 
for this observation. Hence, predicting the Forex price 
series five days in advance is more challenging than 
predicting it one day in advance. Additionally, the model 
may not capture some data information during actual 
Forex forecasting, leading to a gradual deterioration of 
the model’s predictive ability over time. 

The results of the DM test, a statistical technique 
used to evaluate the comparative precision of the 
forecasting models, are shown in Table 4. The DM 
test determines whether variations in the model 
performances are statistically significant by comparing 
the forecast errors between various models. As a result, 
Table 4 contains substantial information on the relative 
effectiveness of the various forecasting models. The 
findings show that, at a 99% level of significance, 
the VMD-CEEMDAN-GRU-ATCN model consistently 
outperforms the benchmark model. This indicates that 
compared to other models, the VMD-CEEMDAN-GRU-
ATCN model is more effective at enhancing prediction 
accuracy. 
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TABLE 3. Evaluating the precision of various models for multi-step forecasting

One-step ahead forecasting Five-step ahead forecasting

Model MAE MAPE SMAPE RMSE MAE MAPE SMAPE RMSE

GRU-ATCN 5.0003 2.9765 0.7615 7.4060 6.5427 4.1847 1.03916 9.3068

VMD-GRU-ATCN 4.0574 2.6034 0.6542 5.6434 4.8112 2.8042 0.7183 7.4659

CEEMDAN-GRU-ATCN 4.4164 2.9155 0.7206 5.9530 5.0188 2.8563 0.7277 8.9182

VMD-LSTM-ATCN 4.2585 2.5464 0.6440 6.9557 4.8658 2.9535 0.7499 7.9318

VMD-CEEMDAN-GRU-
ALSTM

3.5118 2.2107 0.5563 4.8550 4.0127 2.5005 0.6296 5.9189

VMD-CEEMDAN-GRU-
ATCN (w/o TIs)

7.3295 4.1784 1.0797 10.4847 8.6245 4.7873 1.2508 13.280

VMD-CEEMDAN-GRU-
ATCN

3.3069 2.0256 0.5134 5.4573 3.3469 2.1036 0.5231 4.6825

The smallest values are boldfaced

FIGURE 4. Comparing forecasting performance of different models for USD/
PKR prices: one-step ahead (left) vs. five-step ahead (right) results
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TABLE 4. DM test comparison outcomes for forecasting models

Models One-step ahead forecasting Five-step ahead forecasting

GRU-ATCN 21.61206* 9.01316*

VMD-GRU-ATCN 15.47076* 4.29338*

CEEMDAN-GRU-ATCN 13.094515* 4.14530*

VMD-LSTM-ATCN 17.59365* 4.42546*

VMD-CEEMDAN-GRU-ALSTM 2.60313* 3.27727*

VMD-CEEMDAN-GRU-ATCN (w/o TI) 28.24315* 9.00195*

VMD-CEEMDAN-GRU-ATCN - -

*Represents significance level at 1%

FIGURE 5. Visualization of one-step (left) and five-step (right) ahead forecasting 

 

 

Overall, the proposed approach outperforms all 
other benchmark models, including those without 
decomposition models, single decomposition models, 
and other secondary decomposition models. We employ 
the dual decomposition VMD-CEEMDAN method, 
which possesses superior decomposition efficiency and 
effectiveness as well as robustness for parameters, to 
preliminarily weaken the non-stationarity of the original 
data. Previous studies on Forex price forecasting have 
only used a single decomposition-based combined model 
(Ulina, Purba & Halim 2020; Wei et al. 2019). 

Zhang et al. (2021) proposed a hybrid model 
incorporating dual decomposition, EEMD (ensemble 
empirical mode decomposition), to break down the 
residual term after VMD and combine it with an optimized 
machine learning model. The model was tested on 
crude oil prices to check its effectiveness, and the 
outcomes demonstrated that it improved the reliability 
of predictions for crude oil prices. Compared to the one-
level decomposition model, the proposed model was 
determined to be much superior. Based on our findings, 
our proposed model demonstrates superior performance 
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compared to the single decomposition models. These 
results align with a previous study we reviewed, which 
supports the usefulness of our suggested model. Several 
other studies have also demonstrated the superiority of 
dual decomposition over single-level decomposition in 
hybrid models (Yang et al. 2019; Zhou & Wang 2021). 
The study by Guo et al. (2021) employed causal multi-
head attention with the TCN model for cryptocurrency 
price forecasting, and the proposed model outperformed 
other benchmark models. 

Another study by Cheng et al. (2021) employed 
the TCN architecture to forecast chaotic time series, 
benefiting from its remarkable stability during training, 
adjustable perception field and high level of parallelism. 
When compared to the traditional LSTM network and 
the hybrid convolutional neural network CNN-LSTM, 
the TCN model exhibited better performance. Our 
findings are consistent with the two studies mentioned 
above; our ATCN model, when combined with the 
decomposition method, provides outstanding results 
compared to the hybrid LSTM model. This comparison 
highlights the effectiveness of attention-based models 
and the ability of TCN to capture long-term dependencies 
in time series data. Additionally, some other studies 
show that integrating the attention mechanism into 
the TCN model enhances its prediction performance 
(Fan et al. 2021; Zhen et al. 2022). In order to forecast 
exchange rates, Das, Mishra and Rout (2019) developed 
a novel hybrid machine-learning system that combines 
statistical measures and technical indicators. The 
authors conducted a performance analysis to compare 
the effectiveness of these measures. The study showed 
that technical indicators exhibited superior performance 
compared to statistical measures and the hybrid approach 
through simulation graphs and error comparison metrics. 
Our research findings are consistent with these results, 
indicating that our proposed model substantially 
improves when incorporating technical indicators. 

Aryal et al. (2019) employed various deep learning 
models (namely, LSTM, CNN, and TCN) to forecast 
the USD/LKR exchange rate. They then assessed and 
compared the models’ performance, finding that the 
CNN model outperformed the others. In contrast, our 
experimental findings suggest that TCN-based models, 
which combine features from both RNN and CNN 
architectures, outperform LSTM models in terms of 
accuracy. Notably, this study is the first to utilize a hybrid 
deep learning approach with a multi-step forecasting 
horizon to estimate the USD/PKR exchange rate price. 

Compared to Yasir et al. (2019), who examined the USD/
PKR currency exchange rate using machine learning and 
a single deep learning model with sentiment data, our 
evaluation metrics values have shown improvement.

CONCLUSIONS

The study introduces a novel hybrid forecasting model 
for predicting exchange rate prices. The model considers 
the highly nonlinear and intricate features of the Forex 
price time series, which arise from various influencing 
factors. Likewise, the individual models’ limitations led 
to the development of the proposed VMD-CEEMDAN-
GRU-ATCN hybrid model. Currently, data processing 
methods that involve dividing data into multiple modal 
components are widely used. However, some of these 
methods remain intricate and challenging to forecast 
accurately. To address this issue, a new secondary 
decomposition strategy has been developed that combines 
the technical advantages of VMD and CEEMDAN to 
successfully decrease the complexity of the Forex time 
series. Furthermore, the proposed method benefits 
greatly from a GRU model’s powerful nonlinear mapping 
ability, which is employed to predict all the decomposed 
components. Building upon the TCN backbone, by 
exploiting the inherent parallelism of the TCN model, 
we can speed up the training process while avoiding the 
gradient problems that are often encountered with RNNs. 
Moreover, integrating the attention mechanism within 
TCN networks significantly improves their capability to 
choose input features. To boost the effectiveness of the 
hybrid model, fundamental data and seven indicators are 
included, in addition to the historical data of Forex market 
closing prices. The methodology of complex systems has 
been utilized in the empirical analysis, leading to the 
following conclusions. The preliminary results indicate 
that the proposed hybrid model substantially improves 
the prediction accuracy of the original sequence, in 
comparison to the non-decomposition model. Secondly, 
VMD technology outperforms CEEMDAN in terms of 
accurately decomposing the Forex price time series 
for prediction purposes. The hybrid model utilizing 
VMD technology in combination with GRU-ATCN 
exhibits superior prediction accuracy than the one 
using CEEMDAN technology combined with GRU-
ATCN. Finally, the VMD-CEEMDAN-GRU-ATCN hybrid 
model, which incorporates multiple decomposition 
levels, exhibits superior prediction accuracy compared 
to the hybrid model with one-level decomposition. 
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The suggested approach consists of a well-designed 
framework that integrates multiple technical modules and 
has shown outstanding performance. Empirical results 
show that the developed approach exhibits favorable 
error values in both one-step and five-step forecasting in 
comparison to the other competing models. Considering 
the effectiveness of this proposed method, the study is 
likely to be attractive to policymakers and investment 
institutions and individual investors interested in PKR 
currency exchange rates.
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