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ABSTRACT  

This study presents the Generalized Space-Time Autoregressive (GSTAR) model, a 

multivariate time series approach that integrates spatial and temporal observations for data 

forecasting. This study's primary objective is to develop and apply the GSTAR model to forecast 

the Air Pollutant Index (API), which exhibits spatial-temporal dependencies between locations 

and time. Three areas in Selangor have been used in this study: Banting, Petaling, and Shah 

Alam. The model employs uniform and inverse distance weights to consider spatial 

relationships. The forecasting performance is assessed using Root Mean Square Error (RMSE). 

Although both weight methods yield comparable results, the GSTAR model with inverse 

distance weight is promising for API data forecasting with consistently low RMSE values. The 

result of this study emphasises the significance of location-based information in generating more 

efficient and informed solutions. 
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ABSTRAK  

Kajian ini membentangkan model Generalized Space-Time Autoregressive (GSTAR), 

pendekatan siri masa berbilang yang mengintegrasikan pemerhatian spatial dan temporal untuk 

peramalan data. Objektif utama kajian ini adalah untuk membangunkan dan menggunakan 

model GSTAR untuk meramalkan Indeks Pencemaran Udara (IPU), yang mempamerkan 

kebergantungan spatial-temporal antara lokasi dan masa. Tiga lokasi di Selangor telah 

digunakan dalam kajian ini: Banting, Petaling, dan Shah Alam. Model ini menggunakan 

pemberat seragam dan jarak songsang untuk mempertimbangkan perhubungan spatial. Prestasi 

ramalan dinilai menggunakan Ralat Min Kuasa Dua (RMSE). Walaupun kedua-dua kaedah 

berat menghasilkan hasil yang setanding, model GSTAR dengan berat jarak songsang 

menjanjikan peramalan data IPU dengan nilai RMSE rendah secara konsisten. Hasil kajian ini 

menekankan kepentingan maklumat berasaskan lokasi dalam menjana penyelesaian yang lebih 

cekap dan bermaklumat. 

Kata kunci: GSTAR; ramalan; pemberat seragam; pemberat jarak songsang; Indeks Pencemaran 

Udara (IPU)  

                     

1. Introduction 

Time series data find applications in various disciplines, such as meteorology for weather 

forecasting, medicine for monitoring patient progress over time, and finance for studying 

fluctuations. The increasing complexities and challenges related to spatial-time issues have led 

to various observations and statistical concepts applied as solutions. Continuous advancements 

in computing technology and the availability of massive databases have facilitated extensive 

research in developing and improving time series models driven by the escalating volume of 

time series data. 
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Notably, it was only in the mid-1970s that researchers began examining statistical and 

economic models that traced the spatial-temporal development of single or multi-variable 

relationships through time. Over the next two decades, this field experienced a significant surge 

in development and interest (Kamarianakis & Prastacos 2006). Time series data modelling 

comprises both univariate and multivariate data approaches. The Autoregressive Integrated 

Moving Average (ARIMA) model is a common univariate time series modelling example. On 

the other hand, multivariate time series modelling involves techniques such as the Vector 

Autoregressive Integrated Moving Average (VARIMA) model. 

The space-time model is a functional multivariate time series approach that simultaneously 

combines time and spatial observations (Atluri et al. 2018; Koutsaki et al. 2023). In spatial-

temporal problems, the data is multidimensional and correlated with past events and specific 

locations or regions (Akbar et al. 2020). The Space-Time Autoregressive (STAR) and Space-

Time Autoregressive Moving Average (STARMA) models, initially introduced by Cliff and 

Ord (1975), serve as prominent examples of models used for modelling and forecasting spatial-

temporal time series data. STARMA represents an improvement over the Vector 

Autoregressive Moving Average (VARMA) model by reducing the required parameters 

(Suhartono et al. 2016). This model includes a spatial lag operator that signifies how 

neighbouring locations influence a specific spatial point through weightings (Munandar et al. 

2023). 

While STARIMA models are adequate for large-scale geographical applications, they may 

need to be more complex for small-scale spatial time series research (Kamarianakis & Prastacos 

2006). The STAR model demonstrates effectiveness in various fields; however, its lack of 

flexibility becomes apparent when encountering locations with distinct characteristics (Monika 

et al. 2023). Additionally, the assumption of constant autoregressive parameters across all 

locations becomes impractical since different locations typically yield different parameters. To 

address these limitations, Borovkova et al. (2008) and Ruchjana et al. (2012) conducted further 

studies and proposed an enhanced model called the Generalized Space-Time Autoregressive 

(GSTAR) model. The GSTAR model is a natural generalisation of STAR models, allowing its 

application in samples with varying characteristics, as it accommodates varying autoregressive 

parameters for each location (Ruchjana et al. 2012). 

Numerous research studies have been conducted concerning GSTAR modelling since its 

introduction. Anggraeni et al. (2018) utilised the GSTAR model in their research to explore 

spatial effects between stations and their potential for forecasting future rainfall. Their study 

revealed that the aggregate stacking models of Autoregressive Moving Average (ARMA) and 

GSTAR outperformed individual models and ensemble averaging of ARMA and GSTAR in all 

clusters. However, the non-seasonal ARMA model outperformed GSTAR in most clusters, 

suggesting that seasonal models might not be relevant in the context of recent unprecedented 

climatic shifts. 

Zewdie et al. (2018) focused on forecasting temperatures in Northern Ethiopia using the 

GSTAR model in a separate study. They demonstrated that due to parameter variations within 

the area, the GSTAR techniques play a crucial role in enhancing prediction reliability, as 

measured by the root-mean-squared error function (RMSEF). On the other hand, Vector 

Autoregressive (VAR) models, which assume no restrictions on parameters and do not utilise 

weighted matrices to calculate location impact, fall short compared to the GSTAR model. While 

STAR models outperform VAR, they make the incorrect assumption of equal parameters across 

all locations, leading to a higher RMSEF and less reliable forecasts. It is worth noting that one 

weakness of their study is the lack of consideration for seasonal impacts or informal statistical 

tests. 

Air quality data exhibit spatial-temporal dependencies between locations and time that 

rapidly change. The parameter used to describe air quality status is the Air Pollutant Index 
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(API). In Malaysia, the API framework draws inspiration from the one introduced by the United 

States Environmental Protection Agency (USEPA). This index is computed through the 

aggregation of sub-index values corresponding to five primary pollutants: ozone (O3), carbon 

dioxide (CO2), particulate matter (PM10), sulfur dioxide (SO2), and nitrogen dioxide (NO2). 

The API values are categorised into distinct ranges, namely ‘‘Good (0-50), Moderate (51-100), 

Unhealthy (101-200), Very Unhealthy (201-300), and Hazardous (301 and above)” (Leh et al. 

2012). Severe deterioration of air quality globally has been caused by rapid urbanisation, 

leading to increased hospitalisation and premature deaths. Therefore, daily API and forecasting 

air quality can help the general public to take action to protect themselves from polluted air and 

advance air pollution management by the government. 

Air pollution can have adverse effects on various population groups, particularly those who 

are more susceptible due to age, pre-existing health conditions, or socioeconomic factors. 

Vulnerable populations include children since their developing respiratory systems are more 

sensitive to pollutants, and exposure can lead to long-term health problems. Meanwhile, elderly 

individuals or older adults may have weaker immune systems and pre-existing health conditions 

that can be exacerbated by exposure to air pollutants. The case study used in this research 

focused on forecasting the API data using GSTAR in three districts in Selangor, Malaysia: 

Banting, Petaling, and Shah Alam. Air is necessary for all life on Earth to survive; hence, 

studying air quality is crucial as it significantly impacts the country's economic growth and the 

population's health (Manisalidis et al. 2020).  

2. Methodology 

2.1 Data description 

The Air Pollutant Index (API) data used in this study was obtained from the Department of 

Environment (DOE) Malaysia. Collected hourly from January 1st, 2018, to December 31st, 

2018, the data examined the relative changes in air quality status. To address missing data, a 

simple imputation technique was applied, replacing the gaps with the average value of the 

dataset. The data was then divided into two parts: in-sample data, spanning from January 1st, 

2018, to December 17th, 2018, and out-sample data, covering the period from December 18th, 

2018, to December 31st, 2018. For this study, three air quality monitoring stations were selected 

in Selangor, Malaysia, specifically in Banting, Petaling, and Shah Alam districts. 

2.2 Stationary test 

Many time series approaches assume that the data is stationary. Time series analysis needs 

stationarity because forecasting is made possible by a predictable distribution. The 

nonstationary process can be made stationary by detrending or differencing if the stationarity 

assumption deviates (Ng’ang’a & Oleche 2022). David A. Dickey and Wayne A. Fuller 

introduced the DF test in 1979, and it was extended to the Augmented Dickey-Fuller (ADF) 

test in 1984 by Said and Dickey. The error term in the DF test is assumed to be uncorrelated, 

while the ADF test allows for correlated error terms as more lagged terms will be added until 

the error terms are uncorrelated (Gujarati & Porter 2009). Since the ADF test can examine a 

more extensive and complex set of time series models, this study implements the ADF test to 

check for the stationarity of data rather than the DF test. The ADF test is expressed as in Eq. 

(1). 

∆𝑌𝑡 = 𝛿0 + 𝛿1𝑡 + 𝜆𝑌𝑡−1 + ∑ 𝜌𝑗∆𝑌𝑡−𝑗

𝑝−1

𝑗=1

+ 𝑢𝑡 (1) 
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The hypothesis is given by, 𝐻0: 𝜆 = 0 (The series is non-stationary) meanwhile 𝐻1: 𝜆 < 0 

(The series is stationary). The test statistics are expressed as follows: 

 

Test statistics =
�̂�

𝑠𝑒(�̂�)
 (2) 

 

According to Marsani and Shabri (2020), the ADF statistic is a negative value at which a 

more significant negative value than the critical value indicates a more decisive rejection of the 

null hypothesis. In other words, if the 𝑝-value is lesser than the level of significance, we reject 

the null hypothesis and can conclude that the series is stationary. Further examination of the 

data can be carried out.  

2.3 Generalized Space-Time Autoregressive (GSTAR) model 

The STAR models can be naturally generalized into what is known as a Generalized STAR 

(GSTAR) model, which allows the autoregressive parameters to vary depending on the 

location. Let 𝑌𝑖(𝑡) = (𝑌1(𝑡), 𝑌2(𝑡), … , 𝑌𝑁(𝑡))′ at location 𝑖 = 1,2, … , 𝑁 and time 𝑡 = 1,2, … , 𝑇 

follows GSTAR (𝑝; 𝜆1, 𝜆2, … , 𝜆𝑝) model with time order 𝑝 and spatial 𝜆1, 𝜆2, … , 𝜆𝑝 that can be 

written as follows: 

 

𝑌(𝑡) = ∑ (𝜙𝑠0𝑌(𝑡 − 𝑠) + ∑ 𝜙𝑠𝑘𝑊𝑖𝑗
𝑘𝑌(𝑡 − 𝑠)

𝜆𝑠

𝑘=1

)

𝑝

𝑠=1

+ 휀(𝑡) (3) 

 

where 𝑌(𝑡 − 𝑠) is the observed value at time lag 𝑠, 𝑠 is time autoregressive order, 𝑘 is spatial 

autoregressive order, 𝑝 is the time order of 𝑝−𝑡ℎ autoregressive term, λ𝑠 is the spatial order of 

𝑠−𝑡ℎ autoregressive term, 𝑊𝑖𝑗(𝑘)  represents the weight of 𝑘−𝑡ℎ order spatial, 𝜙𝑠0  is the 

diagonal matrices with the diagonal elements as autoregressive of lag time for each location, 

and 𝜙𝑠𝑘  is the diagonal matrices. The diagonal elements are space-time parameters in lag 

spatial and time lag, and 휀(𝑡) is the white noise. 

The process of identifying the optimal GSTAR model involved the utilisation of the Box-

Jenkins methodology. This methodology follows a three-step iterative procedure for 

constructing the ARIMA model, encompassing the stages of model identification, parameter 

estimation, and diagnostic evaluation (Adhikari & Agrawal 2013). When working with a 

specific time series dataset, developing a well-suited model that aligns with the principle of 

parsimony becomes crucial. This principle emphasises the creation of a model with the fewest 

necessary parameters to effectively capture and represent the time series data with accuracy and 

sufficiency. With that, the three steps are necessary in order to select a satisfactory model that 

can be utilised to forecast future values. 

2.4 Spatial weights 

The number of surrounding observed sites in spatial order influences spatial weight. This study 

utilised two types of spatial weight: uniform weight and inverse distance weight. Uniform 

weight assigns an equal weight value to each site and can be calculated using the following 

formula: 
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𝑊𝑖𝑗 =
1

𝑁𝑖
(𝑠)

 (4) 

 

where 𝑊𝑖𝑗 is the weight between 𝑖 and 𝑗. 𝑁𝑖 is the number of neighbours site with a site. The 

second spatial weight, inverse distance weight, calculates the distance between locations. The 

locations used in this research are latitude and longitude. The distance between locations is 

defined as follows: 

 

𝑊𝑖𝑗 =

1
𝑑𝑖𝑗

⁄

∑ 1
𝑑𝑖𝑗

⁄𝑖≠𝑗

 (5) 

 

where 𝑑𝑖𝑗 is calculated using the Euclidean distance between the location 𝑖 and 𝑗. 

 

𝑑𝑖𝑗 = √(𝑢𝑖 − 𝑢𝑗)
2 − (𝑣𝑖 − 𝑣𝑗)

2
 (6) 

 

where 𝑢 and 𝑣 represent the latitude and longitude coordinate location, respectively. 

2.6 Accuracy measurement 

The accuracy measure of forecasting models serves as a basis for identifying the most suitable 

models for making forecasts. By employing the Root Mean Square Error (RMSE), the best 

model could be identified with the lowest RMSE. To calculate RMSE, the following formula 

is used: 

 

RMSE = √
∑ (𝑦𝑖−�̂�𝑖)2𝑛

𝑖=1

𝑛
 (7) 

 

where 𝑖 is the period of time, 𝑛 is the total number of observations, 𝑦𝑖 is the actual value and 

�̂�𝑖 is the forecast value at time 𝑖. 

3. Result and Discussion 

The daily Air Pollutant Index (API) data in three monitoring stations, Banting, Petaling and 

Shah Alam, were plotted in Figure 1. Based on Figure 1, the API in Banting experiences rapid 

fluctuations, with a notable increase from January 2018. The increase rate slows between March 

2018 and September 2018, with a peak API reading exceeding 100 during this period. 

Subsequently, there was a sharp decline in API until December 2018. Shah Alam's API 

gradually increased from January 2018, followed by fluctuations until May 2018. From May to 

July 2018, there was a decline in API, which then rose again from August 2018 to October 2018 

before decreasing until December 2018. API in Petaling is more stable and does not show much 

variation compared to Banting and Shah Alam.  Interestingly, Figure 1 illustrates that all three 

locations show a similar increasing pattern in API around October 2018, followed by a 

subsequent decrease. 
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Figure 1: Time series plot of air pollutant data 

 

Table 1: Descriptive statistic for Air Pollutant Index in Banting, Petaling, and Shah Alam 

Location Mean StDev Minimum Q1 Median Q3 Maximum 

Banting 59.004 7.878 34.708 54.250 58.042 63.208 103.500 

Petaling 61.372 6.254 26.286 57.333 60.417 65.229 81.833 

Shah Alam 61.268 6.548 43.333 56.813 60.417 64.958 91.458 

 

Table 1 presents a comprehensive overview of the descriptive statistics for the Air Pollutant 

Index (API) data in all research locations, encompassing minimum, first quartile (Q1), median, 

mean, standard deviation (StDev), third quartile (Q3), and maximum values. The API varied 

from 34.71 (minimum) to 103.5 (maximum) in the Banting area. For Petaling, the API ranged 

from a minimum of 26.29 to a maximum of 81.83. Similarly, Shah Alam exhibited API data 

with a minimum reading of 43.33 and a maximum reading of 91.46. Notably, the mean API 

value in Banting was the lowest, measuring 59, whereas the mean values for the other locations 

exceeded 60. These findings indicate that the API readings at all three locations fall within the 

Moderate level. Within this range, vulnerable individuals appear to be most at risk, as studies 

have linked air pollution to reduced cognitive performance among the elderly, while others 

suggest that poor air quality poses particular dangers to children. 

To begin model building, the API data need to be in a stationary form. The stationarity of 

the data can be confirmed by examining the consistency of their variance and mean to determine 

if they significantly affect the series' behaviour. In Table 2, the lambda values of the API data 

are summarised both before and after transformation using the Box-Cox transformation. Before 

the transformation, the lambda value indicates that only Petaling data exhibits stationarity in 

variance, while the data for Banting and Shah Alam do not. Stationarity in variance ensures that 

the statistical properties of the data remain relatively constant over time. If the variance is not 

constant, the model parameters may be unstable, making it challenging to estimate and interpret 

the model accurately. This can lead to unreliable forecasts. Consequently, the data for Banting 
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and Shah Alam were transformed using the natural logarithm (ln) and reciprocal (1/y) 

transformations, respectively. Subsequently, the stationarity of the transformed series was 

reevaluated, and now both series show stationarity in variance as the lambda values are equal 

to 1. This confirms the successful transformation of the data, rendering them suitable for further 

analysis and model building. 

Table 2: The results of lambda value before and after transformation 

Location Before 

𝜆 

After 

Transformation 𝜆 

Banting 0.0 ln y 1.0 

Petaling 1.0 No transformation 1.0 

Shah Alam -1.0 1/y 1.0 

 

Once the data has been transformed, it is necessary to assess its stationarity in terms of the 

mean. A formal method to test for data stationarity in the mean is through the Augmented 

Dickey-Fuller (ADF) test. Based on the ADF test results in Table 3, the p-values for all locations 

are greater than 𝛼=0.01. Consequently, 𝐻0 (null hypothesis) cannot be rejected. This leads to 

the conclusion that the time series data is non-stationary, indicating the presence of a unit root 

in the data. Therefore, differencing is necessary since the data is non-stationary in the mean. 

 
Table 3: The results of the Augmented Dickey-Fuller test for transformed API data 

Location ADF p-value 

Banting -3.5517 0.03791 

Petaling -5.6219 0.0100 

Shah Alam -5.1642 0.0100 

 

The Box-Jenkins methodology uses stationary data to initiate model identification. In the 

GSTAR model, time and spatial lag orders are identified using Space-time autocorrelation 

functions (STACF) and Space-time partial autocorrelation functions (STPACF), as illustrated 

in Figure 2, depicting a "dies down" pattern. These autocorrelation functions are instrumental 

in determining the order of the GSTAR model, which is a particular case of the STAR model 

(Nurhayati et al. 2012). Therefore, the model shown in this context is identified as GSTAR(1,1) 

and the parameter estimations are given in Table 4. 

Table 4: The parameter estimation of GSTAR(1,1) model 

Location Parameter Coefficients 

Uniform Inverse 

Banting ∅10
1
 -0.1802 -0.1802 

∅11
1
 0.0012 0.0021 

Petaling ∅10
2
 -0.1648 -0.1641 

∅11
2
 14.2979 15.8354 

Shah Alam ∅10
3
 -0.1535 -0.1530 

∅11
3
 4.4212×10−6 3.3838×10−6 
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Figure 2: STACF and STPACF for stationary data 

 

Before the forecasting stage, the developed model needs to be validated using the Ljung-

Box test, and the results are presented in Table 5. Based on the Ljung-Box test results, all 

the p-values of the variables are more than a significant level of 0.01. As a result, we can 

infer that the errors are random and exhibit white noise. This confirms that the residuals are 

uncorrelated.  

Table 5: The model adequacy test using the Ljung-Box test 

Models Uniform  Inverse  

Location χ2 p-value χ2 p-value 

Banting 0.0147  0.9037  0.0142  0.9050  

Petaling 1.1718  0.2790  1.6031  0.2055  

Shah Alam 1.4145  0.2343  1.4111  0.2349  

 

Table 6: The forecast performance by using RMSE 

Location Uniform Inverse 

Banting 5.7988 5.7705 

Petaling 2.3916 2.2772 

Shah Alam 3.2469 3.2467 
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(a) Banting 

 
 

(b) Petaling 

 
(c) Shah Alam 

 

Figure 3: Time series plot of actual and forecast air pollutant data (a) Banting, (b) Petaling, and (c) Shah Alam 
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Multiple-step ahead forecasting, from December 18th, 2018, to December 31st, 2018, was 

evaluated by assessing the forecast performance using Root Mean Square Error (RMSE) with 

uniform and inverse distance weights. The computed RMSE values are presented in Table 6. 

The data in Table 6 shows that the GSTAR(1,1) model with inverse distance weight yields the 

lowest average RMSE when compared to the uniform weight model. Inverse distance weights 

are inversely proportional to the distance between units. Closer locations receive higher 

weights. Thus, inverse distance weight is better for understanding the spatial effect between the 

datasets compared to uniform weight. The actual and forecasted values for each location are 

given in Figure 3. 

4. Conclusion 

The Generalized Space-Time Autoregressive (GSTAR) model is a commonly used spatial-

temporal model in time series analysis, particularly for forecasting. The data visualisation 

analysis in this study indicates significant correlations between the Air Pollutant Index (API) 

at three locations: Banting, Petaling, and Shah Alam. This suggests that a spatial-temporal 

model can effectively forecast the API for these locations. The stationary test reveals that the 

API data for 2018 are nonstationary in mean and variance. The Box-Cox transformation method 

and differencing are applied to obtain stationary data to address this. Ensuring stationarity is 

crucial for precise forecasts using the GSTAR model. 

The Root Mean Square Error (RMSE) reveals that the GSTAR model with uniform and 

inverse distance weights yields nearly identical results. Nevertheless, the GSTAR model with 

inverse distance weight is favoured due to its lower RMSE value. Specifically, using the inverse 

distance weight in Petaling leads to a 4.78% improvement in forecast accuracy. These findings 

emphasise the importance of identifying the spatial relationships between locations to achieve 

more accurate forecasts. 

Air quality significantly affects both the population's health and the country's economic 

prosperity. Malaysia's current decline in air quality is attributed to industrialisation, an increase 

in private vehicles, and fossil fuel combustion. Accurate predictions using a spatial-temporal 

model like GSTAR can aid the government in monitoring and regulating air pollution. In 

conclusion, the GSTAR model is suitable for predicting API in Selangor. Further development 

could involve incorporating covariates, using different spatial weights, and comparing them 

with Maximum Likelihood Estimation (MLE) to enhance forecasting accuracy.  

References  

Adhikari R. & Agrawal R. 2013. An Introductory Study on Time series Modeling and Forecasting. ArXiv, 

abs/1302.6613 

Akbar M.S., Setiawan, Suhartono, Ruchjana B.N., Prastyo D.D., Muhaimin A. & Setyowati E. 2020. A Generalized 

Space-Time Autoregressive Moving Average (GSTARMA) model for forecasting air pollutant in Surabaya. 

Journal of Physics: Conference Series 1490: 012022. 

Anggraeni D., Kurnia I.F. & Hadi A.F. 2018. Ensemble averaging and stacking of ARIMA and GSTAR model for 

rainfall forecasting. Journal of Physics: Conference Series 1008: 012019. 

Atluri G., Karpatne A. & Kumar V. 2018. Spatio-temporal data mining: A survey of problems and methods. ACM 

Computing Surveys 51(4): 1-41.  

Borovkova S., Lopuhaä H.P. & Ruchjana B.N. 2008. Consistency and asymptotic normality of least squares 

estimators in generalized STAR models. Statistica Neerlandica 62(4): 482–508. 

Cliff A.D. & Ord, J.K. 1975. Space-time modelling with an application to regional forecasting. Transactions of the 

Institute of British Geographers 64: 119–128. 

Dickey D.A. & Fuller W.A. 1979. Distribution of the estimators for autoregressive time series with a unit root. 

Journal of the American Statistical Association 74(366): 427–431.  

Gujarati D.N. & Porter D.C. 2009. Basic Econometrics. 5th Edition. New York, US: McGraw Hill Inc. 

Kamarianakis Y. & Prastacos P. 2006. Spatial Time-Series Modeling: A review of the proposed methodologies. 

University of Crete, Department of Economics, Working Papers. 



 

Generalized Space-Time Autoregressive (GSTAR) for Forecasting Air Pollutant Index in Selangor 
  

153 

Koutsaki E., Vardakis G. & Papadakis N. 2023. Spatiotemporal data mining problems and methods. Analytics 2(2): 

485–508. 

Leh O.L.H., Ahmad S., Aiyub K., Jani Y.M. & Hwa T.K. 2012. Urban air environmental health indicators for Kuala 

Lumpur city. Sains Malaysiana 41(2): 179–191. 

Manisalidis I., Stavropoulou E., Stavropoulos A. & Bezirtzoglou E. 2020. Environmental and Health impacts of air 

pollution: A review. Frontiers in Public Health 8: 14. 

Marsani M.F. & Shabri A. 2020. Non-stationary in extreme share return: World indices application. ASM Science 

Journal 13: 1–9. 

Monika P., Ruchjana B.N., Abdullah A.S. & Budiarto R. 2023. Systematic literature review on an integrated 

Generalized Space Time Autoregressive Integrated Moving Average (GSTARIMA) Model with heteroscedastic 

error and Kriging method for forecasting climate. Preprints 2023: 2023081651. 

Munandar D., Ruchjana B.N., Abdullah A.S. & Pardede H.F. 2023. Literature review on integrating Generalized 

Space-Time Autoregressive Integrated Moving Average (GSTARIMA) and deep neural networks in machine 

learning for climate forecasting. Mathematics 11(13): 2975. 

Ng’ang’a F.W. & Oleche M. 2022. Modelling and forecasting of crude oil price volatility comparative analysis of 

volatility models. Journal of Financial Risk Management 11(1): 154–187.  

Nurhayati N., Pasaribu U.S. & Neswan O. 2012. Application of generalized space-time autoregressive model on 

GDP data in West European Countries. Journal of Probability and Statistics 2012: 867056.  

Ruchjana B.N., Borovkova S.A. & Lopuhaä H.P. 2012. Least Squares estimation of Generalized Space Time 

AutoRegressive (GSTAR) model and its properties. AIP Conference Proceedings 1450(1): 61–64. 

Said S.E. & Dickey D.A. 1984. Testing for unit roots in autoregressive-moving average models of unknown order. 

Biometrika 71(3): 599–607. 

Suhartono, Wahyuningrum S.R., Setiawan, & Akbar M.S. 2016. GSTARX-GLS model for spatio-temporal data 

forecasting. Malaysian Journal of Mathematical Sciences 10(S): 91-103. 

Zewdie M.A., Wubit G.G. & Ayele A.W. 2018. G-STAR model for forecasting space-time variation of temperature 

in Northern Ethiopia. Turkish Journal of Forecasting 02(1): 9–19. 

 

 

 

Department of Mathematics and Statistics 

Faculty of Science  

Universiti Putra Malaysia 

43400 UPM Serdang 

Selangor DE, MALAYSIA 

E-mail:  201112@student.upm.edu.my, nurhaizum_ar@upm.edu.my*, hsyahida@upm.edu.my  

 

 

 

Received: 7 August 2023 

Accepted: 4 September 2023 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
*Corresponding author       


