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ABSTRACT 

 

The ultimate goals of Augmented Reality (AR) applications are to provide a better management 

and ubiquitous access to information using seamless techniques in which the interactive real 

world is combined with an interactive computer-generated world, creating one coherent 

environment. The performance of the AR algorithm in terms of brightness, rotation, and scale 

in the real environment had been addressed as an issue due to the controlled environment. 

Hence, a performance evaluation of the AR algorithm in a real controlled environment is 

proposed in this paper. BRISK detector, FREAK descriptor, and Hamming distance matcher 

algorithms are implemented in a mobile AR application in order to evaluate the AR algorithm. 

The mobile AR application is run on the Samsung Note 9 smartphone. The image used in the 

evaluation is the Graffiti image from the Mikolajczyk data set. Graffiti image is fully printed 

in an A4 size paper and is attached to a wall with a height of 1.5m. This performance evaluation 

is able to evaluate the robustness of the AR algorithm in terms of brightness value from 0 Watts 

per square meter up to 70 Watts per square meter. The robustness of the AR algorithm in terms 

of scale invariance was evaluated from the distance of 5cm up to 50cm from the input image. 

The AR algorithm can obtain an accuracy of 83.49%, 70.89%, and 72.78% in terms of 

brightness changes, scale changes, and rotation changes respectively. This work introduces a 

more suitable performance evaluation for an AR application in a real controlled environment. 

 

Keywords: Accuracy evaluation, mobile augmented reality, illumination, scale and rotation 

 

ABSTRAK 

 

Matlamat utama aplikasi Augmentasi Realiti (AR) adalah untuk menyediakan pengurusan 

yang lebih baik dan akses maklumat yang meluas melalui teknik tanpa batas di mana dunia 

nyata interaktif digabungkan dengan dunia maya interaktif, mencipta satu persekitaran yang 

koheren. Prestasi algoritma AR dari segi kecerahan, putaran, dan skala dalam persekitaran 

nyata telah ditangani sebagai isu kerana persekitaran yang terkawal. Oleh itu, penilaian prestasi 
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algoritma AR dalam persekitaran terkawal nyata dicadangkan dalam manuskrip ini. Algoritma 

pengesan BRISK, pemerihalan FREAK, dan algoritma perpadanan jarak Hamming 

dilaksanakan dalam aplikasi AR bergerak untuk menilai algoritma AR. Aplikasi AR mudah 

alih dijalankan pada telefon pintar Samsung Note 9. Imej yang digunakan dalam penilaian 

adalah imej Graffiti dari set data Mikolajczyk. Imej Graffiti dicetak sepenuhnya dalam kertas 

saiz A4 dan dilekatkan pada dinding dengan ketinggian 1.5m. Penilaian prestasi ini mampu 

menilai keteguhan algoritma AR dari segi nilai kecerahan dari 0 Watt per meter persegi hingga 

70 Watt per meter persegi. Keteguhan algoritma AR dari segi tidak keseragaman skala dinilai 

dari jarak 5cm hingga 50cm dari imej input. Algoritma AR dapat mencapai ketepatan 83.49%, 

70.89%, dan 72.78% dari segi perubahan kecerahan, perubahan skala, dan perubahan putaran 

masing-masing. Manuskrip ini memperkenalkan penilaian prestasi yang lebih sesuai untuk 

aplikasi AR dalam persekitaran nyata terkawal.  

 

Kata Kunci: penilaian keteguhan, augmentasi realiti mudah alih, pencahayaan, 

skala dan putaran 

 

INTRODUCTION 

 

Augmented Reality (AR) is the combination of the real world and the virtual content where it 

allows users to interact with virtual objects in real-time (Azuma 1997). Smartphones have been 

identified as the most promising devices for AR (Arshad et al. 2016). In order to achieve 

optimal performance in mobile AR applications, choosing a suitable AR algorithm is an 

important issue as the smartphone has its limited processing capabilities and memories 

compared to the PC platform (Shang et al. 2016). Tracking in AR consists of three important 

components; detector, descriptor, and matcher. The performance of the AR algorithm in terms 

of brightness, rotation, and scale in the real environment had been addressed as an issue due to 

the controlled environment (Liu et al. 2010 & Cheng et al. 2020). Evaluation performance of 

the mobile AR algorithm in a real environment is an issue that has not been fully resolved yet. 

The evaluation of the AR algorithm had been proposed by previous researchers using a 

standard dataset to evaluate the robustness of the algorithm in terms of brightness value, 

rotation, and scale (Alahi et al. 2012; Van et al. 2010; Khan et al. 2018; Tan et al. 2019; 

Alshazly et al. 2017). Testing the algorithm using a standard dataset is only able to test the 

performance of the algorithm without being influenced by a controlled environment. 

Evaluation of algorithms in a real controlled environment to test the performance of an 

algorithm is also important. Therefore, a testing algorithm in a real environment should be done 

to test the performance of an algorithm when it is being influenced by a controlled environment 

such as a very bright environment or very far recognition distance. This paper will discuss how 

the performance evaluation of the AR algorithm in the real environment is carried out to handle 

the controlled environment problem. Among the tests carried out in the real environment is the 

robustness of the AR algorithm in terms of a brightness value, rotation, and scale changes. 

The rest of the paper is structured as follows. Section 2 discussed the algorithm used in 

AR. Section 3 introduced the configuration proposed to evaluate the AR algorithm. Section 4 

then discussed the results of each test. Finally, Section 5 presented the conclusion. 

 

AUGMENTED REALITY ALGORITHM 

 

The image recognition process in the AR application can be performed using three main 

algorithms; detector, descriptor, and matcher. The detection process is the first step in the 

image recognition process to detect the important feature in both input image (image to be 

detected) and reference image (image stored in the database). Many detector algorithms have 
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been introduced; SIFT (Lowe 2004), FAST (Rosten et al. 2006) and BRISK (Leutenegger et 

al. 2011). SIFT detector is a floating-point detector which is not suitable for a mobile AR 

application due to the low efficiency of the SIFT detector. BRISK is a binary detector and it is 

the enhancement of the FAST detector. Once the important features are detected by the 

detector, the descriptor algorithm is used to extract and describe the important features 

(keypoints). Previous researchers have also proposed many descriptor algorithms such as SIFT 

(Lowe, 2004), SURF (Bay et al. 2008), BRIEF (Calonder et al. 2012), ORB (Rublee et al., 

2011), BRISK (Leutenegger et al. 2011) and FREAK (Alahi et al. 2012). SIFT and SURF are 

floating-point descriptions and BRIEF, ORB, BRISK and FREAK are binary subtitles in the 

image processing field. FREAK descriptor has been recognized as the most distinctive 

descriptor in a mobile AR application compared to other descriptors (Tan et al. 2019). Matcher 

algorithms need to be used to match all the keypoints extracted from the input image and 

reference image. There are two types of distance; Euclidean distance and Hamming distance 

which are commonly used in image recognition (Bay et al. 2008). Euclidean distance matched 

the keypoints between two images by comparing the distance between keypoints using the 

metric (Danielsson 1980). Both keypoints are considered as the same keypoints if the distance 

between keypoints is small (certain threshold). Euclidean distance is usually used by floating-

point descriptors like SIFT and SURF. Hamming distance is used by binary descriptors like 

BRIEF, ORB, and FREAK. Hamming distance is defined as the number of different bits 

between strings. Hamming distance can be calculated quickly because it only needs to perform 

XOR bitwise operation on both strings. Logical operation like XOR is fast and simple, it is 

directly supported by the computer processor architecture. An example of Hamming distance 

is given for a better understanding; given two 8-bits strings “11011011” and “11011100”, the 

Hamming distance between these two strings is three. This matching algorithm for binary 

descriptor can perform in a very short computation time compared to Euclidean distance. The 

last step in the image recognition process is position estimation. This is to determine the 

position of the input image and the virtual object in order to accurately superimpose the virtual 

object on top of the input image. After all these processes are executed, a 3D object will then 

be augmented over the input image with the correct position (Uchiyama et al. 2012). Figure 1 

shows the image recognition process in the AR application. 

 

AR researchers in recent years have been working hard to develop an efficient and robust 

mobile AR application (Tan et al. 2018, Nafea et al. 2022). Effective and robustness are the 

standard performance measures for an AR application. Efficiency is defined as the ability to 

match the key points between input and reference image in the shortest time possible. 

Robustness is generally be defined as accurately matching the key points between input and 

reference image in the presence of brightness, rotation, and scale changes (Tan et al. 2016). 

The term “accuracy” can also be used to describe the robustness of the image recognition 

algorithm. Hence, all the AR algorithms should be evaluated carefully before applying them to 

an AR application in order to create an efficient and robust mobile AR application. Testing 

algorithm using a standard dataset is important however the performance of the algorithm 

couldn’t be tested under a controlled environment such as a very bright environment or a very 

far recognition system (Zeng et al. 2014). Hence, the performance of the AR algorithm should 

also be tested in the real environment in order to accurately evaluate the performance of the 

AR algorithm under a controlled environment. 
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FIGURE 1. Image recognition process in the AR application 

 

EVALUATION CONFIGURATION IN REAL ENVIRONMENT 

 

Testing the AR algorithm in the real environmental should be able to test the performance of 

the algorithm in a controlled environment. The testing incorporates the BRISK detector as the 

detection algorithm, the FREAK descriptor as the descriptor algorithm, and the Hamming 

distance serving as the matching algorithm, in alignment with the methodology outlined in the 

prior research by Tan et al. in 2019. The performance evaluation carried out in this test are 

brightness, rotation, and scale invariance test which will determine the accuracy or robustness 

of an image recognition algorithm. All the algorithms involved in this testing are from OpenCV 

2.4.9 and are implemented in a mobile AR application. The application is implemented in an 

Android phone (Samsung Note 9) which fulfils the minimum requirement to run a mobile AR 

application. This smartphone is powered by a Quad-core 1.7 GHz CPU processor and has one 

built-in camera that can take video with 1080P at 28fps or 720P at 30f. This smartphone 

operates with Android OS 4.2 and Nvidia Tegra 3 chipset. The reference image used in this 

test is the Graffiti image (210mm x 297mm) from the Mikolajczyk data set (Mikolajczyk et al., 

2003). Graffiti images are printed in an A4 size paper and attached to the wall at a height of 

1.5m. The room to carry out the testing is 3.0m width and 3.5m length with two Philips 

fluorescent lamps (each lamp has a total energy of 36 Watts) as shown in Figure 2. 
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FIGURE 2. Room conditions to carry out testing in real environment 

 

BRIGHTNESS VALUE 

 

Evaluation of the robustness of brightness value in AR application in a real environment had 

been done by other researchers without disclosing the environment conditions involved in the 

study (Liu et al. 2009, Bleser et al. 2009). Therefore, this paper will discuss in detail the test 

configurations used to obtain different brightness values in the real environment. 

Evaluation of brightness value is done in a room condition as shown in Figure 2. 

Fluorescent lamp 2 is not turned on while fluorescent lamp 1 is on. According to inverse square 

law, the value of the brightness is inversely proportional to the square distance of the lighting 

source as shown in Figure 3 (Richard 2006). Based on the inverse square law, the image which 

is closer to the lighting source will obtain a higher brightness value compared to the image 

which is far from the lighting source. Therefore, the evaluation of brightness value in mobile 

AR applications will be carried out based on the reverse square law. Brightness value in the 

real environment is calculated based on the inverse square law equation: 

 

 Brightness Value =  
F

4πD2 (1) 

Where F is the amount of energy emitted by the fluorescent lamp in the Watt unit. D is the 

distance between the fluorescent lamp and the input image. Therefore, the unit for brightness 

value is watt/m^2. The fluorescent lamp used in this study has a total energy of 36 Watts. The 

distance between the fluorescent lamp and the input image is calculated for each test. The 

percentage of accuracy obtained in each brightness value is calculated by using Equation 2. 

 

 Percentage of Accuracy =  
No.of correct matches (n)

No.of matches (N)
*100 % (2) 

 

 
FIGURE 3. Inverse square law of brightness 
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At the beginning of the test, the smartphone’s camera is placed at the farthest distance from the 

lighting source. The height of the smartphone’s camera is set to be parallel to the input image. 

The distance between the input image and the smartphone’s camera is set at 20cm. Then the 

distance of the input image and the smartphone’s camera is gradually moved towards the 

lighting source and the percentage of accuracy is recorded. The brightness value can be 

calculated in each condition by determining the distance between the lighting source and the 

input image. This test is repeated 50 times at each condition by using a mobile AR application 

that uses a BRISK detector, FREAK descriptor, and Hamming distance matcher. Figure 4 

shows the configuration test performed to evaluate the AR algorithm in the real environment 

with the change in brightness value. 

 

 
FIGURE 4. Configuration to evaluate the ar algorithm with a change in brightness value 

 

SCALE 

 

Configuration test performed to evaluate the performance of the AR algorithm towards scale 

invariance in the real environment is based on previous research where they test the accuracy 

of the descriptor in PC-based AR (Greg 2011). The input image is in a small-scale when the 

distance between the smartphone’s camera and the input image is far. The input image will 

gradually increase in size when the smartphone’s camera is moved towards the input image. 

The Graffiti input image is attached to the Wall 4 shown in Figure 2. Both fluorescent lamps 

are turned on throughout the test. 

The smartphone’s camera is placed closest to the input image (5cm from the input 

image) at the beginning of the test. Then the distance of the smartphone’s camera and the input 

image is gradually increased by moving away from the smartphone’s camera from the input 

image. The height of the smartphone’s camera is set to be parallel to the input image. The 

percentage of accuracy obtain at each distance is recorded and the accuracy is calculated based 

on Equation 2. This test is repeated 50 times at each distance by using a mobile AR application 

that uses a BRISK detector, FREAK descriptor, and Hamming distance matcher. Figure 5 

shows the configuration test performed to evaluate the AR algorithm in the real environment 

with a change in scale. value. 
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FIGURE 5. Configuration to Evaluate the AR Algorithm with a Change in Scale 

 

Rotation 

 

Evaluation test carried out to evaluate the performance of the AR algorithm towards rotation 

invariance in the real environment is referred to previous research that tests the accuracy of 

detector and descriptor in PC-based AR. The Graffiti input image is attached to Wall 4 (Figure 

2). Both fluorescent lamps are turned on throughout the testing. The distance between the 

smartphone’s camera and the input image is set at 20cm. The smartphone is rotated 30 degrees 

clockwise up to 360 degrees and the percentage of accuracy is recorded using Equation 2. The 

test is conducted 50 times at each degree. Figure 6 shows the configuration test performed to 

evaluate the AR algorithm in the real environment with a change in rotation. 

 

 
FIGURE 6. Configuration to Evaluate the AR Algorithm with a Change in Rotation 

 

RESULT 

 

Evaluation of AR algorithm in terms of brightness value was carried out using a mobile AR 

application and the test configuration was discussed in Section 3.1. Figure 7 shows the accuracy 

percentage obtained by the AR algorithm in different brightness values. A mean has also been 

conducted to determine the percentage of mean accuracy of the AR algorithm in terms of 

brightness value in the real environment. Table 1 shows the mean accuracy and standard 

deviation obtained by the AR algorithm and the accuracy obtained using the standard dataset 

in terms of brightness value based on the previous researcher (Tan et al. 2019). 
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FIGURE 7. Accuracy Percentage Obtained by the AR Algorithm in Different Brightness 

Value 

 

TABLE 1. Mean Accuracy and Standard Deviation Obtained by the AR Algorithm in Terms 

of Brightness Value 

Condition Environment 
Mean 

(%) 
Standard Deviation 

Brightness 

Value 

Real Environment 83.490 5.527 

Dataset (Tan et al., 2019) 84.041 - 

 

The results showed that the highest accuracy percentage is obtained when the brightness 

condition is at 50 watt/m^2. This is because of this brightness condition had undergone a 

minimum change in brightness value compared to the reference image. The normal brightness 

condition allows the AR algorithm to function robustly. When the brightness value decreases 

(0 to 40 watt/m^2) or increase (70 watt/m^2), the percentage accuracy obtained by the AR 

algorithm decreases. Although the accuracy percentage decreased, the image recognition 

process has not failed despite the decreasing or increasing of the brightness value. 

Performance of AR algorithm in terms of scale invariance is carried out using a mobile 

AR application and the test configuration was discussed in Section 3.2. Figure 8 shows the 

accuracy percentage obtained by the AR algorithm in different scales (distance between the 

smartphone’s camera and the input image). A mean and standard deviation tests have also been 

conducted to determine the percentage mean accuracy of the AR algorithm in terms of scale 

invariance in the real environment. Table 2 shows the mean accuracy and standard deviation 

obtained by the AR algorithm and the mean accuracy obtained using the standard dataset in 

terms of scale invariance based on the previous researcher (Tan et al. 2019). 
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FIGURE 8. Accuracy percentage obtained by the AR algorithm in different scale 

 

TABLE 2. Mean accuracy and standard deviation obtained by the AR algorithm in terms of 

scale 

Condition Environment Mean (%) Standard Deviation 

Scale 

Invariance 

Real Environment 70.890 8.471 

Dataset (Tan et al, 2019) 90.156 - 

 

The results clearly showed that the highest accuracy is achieved when the distance between the 

input image and the smartphone’s camera is at 20cm as the size of the image is almost similar 

to the size of the reference image. When the distance between the input image and the 

smartphone’s camera is at 5cm, the image is too large to be detected. The accuracy percentage 

is high throughout the sequence of scale images (from 10cm to 40cm), but the accuracy 

percentage starts to drop dramatically at 45cm onwards. The accuracy percentage of the AR 

algorithm drops to 0% when the distance between the input image and the smartphone’s camera 

reach 60cm because the image is too small to be detected. 

Evaluation of AR algorithm in terms of rotation invariance is carried out using a mobile 

AR application and the test configuration was discussed in Section 3.3. Figure 9 shows the 

accuracy percentage obtained by the AR algorithm in different rotation. A mean and standard 

deviation test has also been conducted to determine the percentage mean accuracy of the AR 

algorithm in terms of rotation invariance in the real environment. Table 3 shows the mean 

accuracy and standard deviation obtained by the AR algorithm and the mean accuracy obtained 

using the standard dataset in terms of rotation invariance based on the previous researcher (Tan 

et al. 2019). 

 

TABLE 3. Mean accuracy and standard deviation obtained by the AR algorithm in terms of 

rotation 

Condition Environment 
Mean 

(%) 

Standard 

Deviation 

Brightness 

Value 

Real 

Environment 
72.771 8.174 

Dataset (Tan et 

al. 2019) 
88.135 - 
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FIGURE 9. Accuracy percentage obtained by the AR algorithm in different rotation 

 

The results showed that the highest accuracy percentage is obtained at rotation condition 360 

degrees followed by rotation condition 30 degrees which are 88.59% and 82.50% respectively. 

This is because the two input images had undergone a minimum rotation change in the real 

environment and most of the AR algorithms can function accurately. As the smartphone starts 

to rotate gradually from the input image, the accuracy percentage of the AR algorithm began 

to decline especially when the scale condition reached 240 degrees and 330 degrees. However, 

the accuracy percentage of the AR algorithm did not change abruptly throughout the complete 

sequence of rotated images from 30 degrees to 360 degrees because all the AR algorithms used 

in this work are designed to extract features in high rotation variation. 

Based on the result shown above, all the evaluations have been carried out smoothly 

and an optimum accuracy percentage up to 90.15% in the brightness value test has been 

achieved. The means of accuracy obtained in all the three tests are above 70% and the standard 

deviation value is low. The low standard deviation shows that all the data are clustered closely 

around the mean which is more reliable. 

 

DISCUSSION 

 

In this paper, a performance evaluation of the mobile AR algorithm in a real environment is 

presented. The goal was to compare the performance of the mobile AR algorithm in real 

environment and standard dataset. The steps to evaluate the performance accuracy of the 

mobile AR algorithm in a real environment is proposed in this work. The performance accuracy 

of the mobile AR algorithm using a standard dataset is obtained from the previous researcher 

which also tested the algorithm in terms of scale invariance, rotation invariance, and brightness 

value (Tan et al. 2019). The previous researcher had also tested the performance of the mobile 

AR algorithm proposed in this paper; BRISK detector, FREAK descriptor and Hamming 

Distance matcher. Hence, this work able to compare the mean accuracy of each invariance 

obtained from this work with the mean accuracy obtain from the previous paper. Based on the 

results performance accuracy of the mobile AR algorithm in the real environment are always 

lower compared to the standard dataset. The performance of the mobile AR algorithm in the 

real environment with different brightness able to obtain the mean accuracy up to 83.490% but 

able to obtain up to 84.041% by using standard datasets. While the performance of the mobile 

AR algorithm in the real environment and by using standard datasets in terms of scale 

invariance able to obtain the mean accuracy up to 70.890% and 90.156% respectively. The 

performance of the mobile AR algorithm in a real environment in terms of rotation invariance 

able to obtain the mean accuracy up to 72.771% but able to obtain up to 88.135% by using 
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standard datasets. These results show that the performance accuracy of mobile AR algorithm 

in the real environment are always affected due to the huge range of controlled environment. 

Compared with evaluation using standard datasets through the mobile processor, images from 

real environments contain more variation in lighting, background, image quality, etc. One of 

the controlled conditions is the light conditions which ranging from dim lighting or darkness 

to bright sunshine. Therefore, the AR algorithm in real environments is much more challenging 

than by using a standard dataset. Moreover, many real-world applications require high accuracy 

performance in a controlled environment. Therefore, the evaluation of the AR algorithm in a 

real environment is needed to test the performance of the AR algorithm which might affect by 

the controlled environment especially outdoor environments. In summary, the performance gap 

often arises from the mismatch between the training data and the complexity of real-world 

scenarios, leading to a lack of robustness and adaptability in the algorithm's application to 

diverse and dynamic environments. 

 

CONCLUSION 

 

This paper aims to introduce a performance evaluation of the AR algorithm in the real 

environment. The AR algorithm tested in this research are BRISK detector, FREAK descriptor, 

and Hamming distance matcher. The performance evaluation proposed in this research can 

evaluate the robustness of the AR algorithm in terms of brightness value from 0 Watts per 

square meter up to 70 Watts per square meter. The robustness of the AR algorithm in terms of 

scale invariance has been successfully evaluated from the distance of 5cm up to 50cm from the 

input image. The performance of the AR algorithm in terms of rotation invariance in the real 

environment has been evaluated from 30 degrees angle up to 360 degrees angle. All the 

evaluations can achieve at least 70% of mean accuracy in the real environment. This paper has 

successfully presented a reliable performance evaluation for a mobile AR algorithm in a real 

environment. 
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