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ABSTRACT

Influential observations (IOs) are those observations which either alone or together with several other observations 
have detrimental effect on the computed values of various estimates. As such, it is very important to detect their 
presence. Several methods have been proposed to identify IOs that include the fast improvised influential distance 
(FIID). The FIID method has been shown to be more efficient than some existing methods. Nonetheless, the shortcoming 
of the FIID method is that, it is computationally not stable, still suffers from masking and swamping effects, time 
consuming issues and not using proper cut-off point. As a solution to this problem, a new robust version of influential 
distance method (RFIID) which is based on Reweighted Fast Consistent and High Breakdown (RFCH) estimator is 
proposed.  The results of real data and Monte Carlo simulation study indicate that the RFIID able to correctly separate 
the IOs from the rest of data with the least computational running times, least swamping effect and no masking effect 
compared to the other methods in this study.
Keywords: Good leverage point; influential distance; influential observations; Reweighted Fast Consistent and High 
Breakdown (RFCH) estimator

ABSTRAK

Cerapan berpengaruh (IO) ditakrifkan sebagai cerapan sama ada bersendirian atau bersama dengan beberapa cerapan 
lain yang mempunyai kesan memudaratkan ke atas nilai kiraan pelbagai anggaran. Oleh itu, sangat penting untuk 
mengecam kehadiran cerapan berpengaruh. Beberapa kaedah telah dicadangkan untuk mengecam IO termasuk kaedah 
penambahbaikan jarak berpengaruh pantas (FIID). Kaedah FIID telah ditunjukkan lebih cekap dibandingkan dengan 
kaedah sedia ada. Walau bagaimanapun, kaedah FIID mempunyai kelemahan iaitu pengiraannya tidak stabil, masih 
mempunyai kesan penyorokan dan limpahan, isu masa pengiraan yang panjang dan tidak menggunakan titik genting 
yang betul. Kaedah teguh versi baharu bagi jarak berpengaruh yang berasaskan penganggar berpemberat konsisten 
pantas dan titik musnah tinggi (RFIID) dicadangkan untuk mengatasi masalah ini. Keputusan data sebenar dan kajian 
simulasi Monte Carlo menunjukkan RFIID berupaya untuk mengasingkan IO daripada keseluruhan data dengan masa 
pengiraan paling singkat, kesan limpahan paling kecil tanpa kesan penyorokan dibandingkan dengan kaedah lain 
dalam kajian ini.
Kata kunci: Cerapan berpengaruh; jarak berpengaruh; penganggar pantas tekal berpemberat dan titik musnah tinggi; 
titik tuasan baik

INTRODUCTION

Belsley, Kuh and Welsch (2004) noted that influential 
observations (IOs) are those observations which either 
alone or together with several other observations have 

detrimental effect on the computed values of various 
estimates. Such observations are responsible for 
misleading conclusions about the fitting of a multiple 
linear regression model. It is generally believe that IOs are 
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outlying observations in the X-space or Y-space. Outlying 
observations in the X-space is referred as high leverage 
points (HLPs). However, according to Chatterjee and Hadi 
(1986), IOs are not always HLPs and vice versa. 

It is worth mentioning that the values of numerous 
estimates are much affected by IOs and the ordinary 
least squares (OLS) method no longer has the optimal 
property in their  presence. Hampel et al. (2011) pointed 
out that there is no guarantee that IOs are absence in a real 
dataset. Hence, it is very imperative to detect them and 
to take them into account when interpreting the results of 
statistical analysis. Various methods are available in the 
literature for the detection of IOs, but the commonly used 
techniques are the Studentized residuals, Cook’s distance 
and difference in fitted values (DFFITS). DFFITS was 
recommended by Welsch (1980) because it incorporates 
both the leverage and residual components. Rousseeuw 
and Leroy (1987) noted that the DFFITS is very successful 
in identifying single influential observation, but fails to 
detect multiple influential observations. 

When establishing an approach to determine IOs, 
both the dependent and independent variables should be 
taken into consideration. According to Rahmatullah Imon 
(2002) and Rousseeuw and Leroy (1987), failing to do 
that may result in inaccurate detection of IOs and will 
lead to misleading interpretation. As such, Rahmatullah 
Imon (2005) combined both the group deleted leverage 
and residual components in the establishment of the 
generalized version of DFFITS, which is called the 
generalized distance and difference in fitted values 
(GDFF). Despite the fact that the GDFF can spot multiple 
IOs, it is still not very successful in detecting IOs as it still 
suffers from masking and swamping of IOs. The reason for 
this shortcoming is most likely owing to the GDFF’s basic 
subset being insufficiently successful in separating the 
deletion and the remaining groups. Due to this deficiency, 
a new identification measure for IOs which is called 
influential distance (ID) is put forward by Nurunnabi, 
Nasser and Imon (2016). This method comprises of 
three main steps whereby group union method (GUM) 
is employed to detect suspected unusual observations in 
the first step. The GUM utilised the union of five different 
identifying methods such as the standardized studentized 
residual, standardized least median of squares (LMS) 
residuals, hat matrix, Cooks distance and difference in fits. 
High leverage points (HLPs) and vertical outliers (VOs) 
are identified in the second step, followed by calculating 
the ID using Mahalanobis distance (MD) in the final step. 
The performance of ID method is better than the GDFF in 
terms of IOs detection. Nonetheless the ID suffers from 
swamping and masking effect due to using inefficient 

detection methods in GUM which have been proven by 
Habshah, Norazan and Rahmatullah Imon (2009) to have 
such problems. Moreover, in their algorithm, they did not 
consider separating the observations into good and bad 
high leverage points (HLPs). Consequently, by ignoring 
this step, some of good observations are detected as 
suspected IOs (swamping) while some bad observations 
are not declared as IOs (masking). This will ultimately 
effect the final results of ID. Another weakness of ID is 
that it also suffers from long computational running times 
due to using GUM.

As a solution to this problem, Habshah, Muhammad 
and Ismaeel (2021) proposed a new version of ID (FIID) 
which has less computational running times. It is quite 
successful in detecting IOs with less swamping and 
masking effect. However, the FIID is still inefficient 
with regard to computation running times and detection 
of IOs because it is based on index set equality (ISE).  
It is now evident that ISE is unstable as its algorithm 
depends on the selected initial subset, h.  Habshah et al. 
(2020) exemplified that the final estimator of location 
and scatter of (ISE) is equivalent to minimum covariance 
determinant (MCD) if the same initial subset is utilized, 
otherwise the results will be quite different. Moreover, 
the FIID used improper cut-off point, i.e., using (1-α) 
quantile of F distribution based on the assumption that 
the p-dimensional variables follow a multivariate normal 
distribution. However, in a real life problem, there is 
no guarantee that data would come from a multivariate 
normal distribution.

To overcome these weaknesses, we propose a new 
version of identifying IOs called the robust influential 
distance method which is based on the Reweighted Fast 
Consistent and High Breakdown estimator (RFCH), 
denoted as RFIID. The RFIID is the extension work 
of FIID. To reduce the computational running times 
and to improve the correct detection of HLPs with the 
least swamping effect, the RFCH is incorporated in the 
algorithm of RFIID in order to estimate the mean vector 
and variance covariance matrix of the predictor variables. 
It has been proven by Olive and Hawkin (2010) that the 
location and scatter estimators of RFCH were consistent 
estimators. Furthermore, since the distribution of RFIID 
is intractable, as per Habshah, Norazan and Rahmatullah 
Imon (2009), Rashid et al. (2022a), and Zahariah and 
Habshah (2023), we propose using a confidence bound 
type cut-off point for RFIID instead of using (1- α) quantile 
of F distribution as a cut-off point.

Hence, the objectives of this study were as follows: 
(1) to develop a new method of identification of influential 
observations by incorporating robust mahalanobis 
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distance (RMD) based on  the RFCH estimators; (2) to 
establish a new algorithm of classifying observations 
into three groups including regular observations, good 
leverage points and influential observations; (3) to 
propose using a confidence bound type  cut-off point 
for RFIID; (4) to assess the performance of the proposed 
RFIID method  compared to ID and FIID by using 
simulation study; and (5) to apply the proposed method 
to real dataset, namely the Gunst and Mason data.  

The rest of the paper is structured as follows. 
The Reweighted Fast Consistent and High breakdown 
(RFCH) estimator will be introduced in the next section. 
The proposed robust and fast improvised influential 
distance (RFIID) is described in the following section. The 
subsequent section will present the simulation study and 
real data examples. Finally, the conclusion of the study 
is presented in the last section. 

REWEIGHTED FAST CONSISTENT AND HIGH 
BREAKDOWN (RFCH) ESTIMATORS

Mahalanobis Distance (MD) measures how far each point 
is from the centroid of all points for the independent 
variables. It can be used to determine whether or not a 
sample contain an outlier or whether or not a process is 
in control (Habshah & Shabbak 2011). Let present the ith 
vector of independent variables as:

𝑥𝑥𝑖𝑖
′ = (1, 𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥𝑃𝑃) = (1, 𝑡𝑡𝑖𝑖), 

where 𝑡𝑡𝑖𝑖 is a 𝑝𝑝 −dimensional row vector. The vector of the mean and the variance covariance 

matrix can be calculated, respectively as:  

 𝑡𝑡̅ = 1 𝑛𝑛⁄ ∑ 𝑡𝑡𝑖𝑖
𝑛𝑛
𝑖𝑖=1    

𝐶𝐶 = ( 1
𝑛𝑛−1) ∑ (𝑡𝑡𝑖𝑖

𝑛𝑛
𝑖𝑖=1 − 𝑡𝑡̅ ) (𝑡𝑡𝑖𝑖 − 𝑡𝑡̅ )′,   

 

where ti is a p-dimensional row vector. The vector of 
the mean and the variance covariance matrix can be 
calculated, respectively as: 

   

𝑥𝑥𝑖𝑖
′ = (1, 𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥𝑃𝑃) = (1, 𝑡𝑡𝑖𝑖), 

where 𝑡𝑡𝑖𝑖 is a 𝑝𝑝 −dimensional row vector. The vector of the mean and the variance covariance 

matrix can be calculated, respectively as:  

 𝑡𝑡̅ = 1 𝑛𝑛⁄ ∑ 𝑡𝑡𝑖𝑖
𝑛𝑛
𝑖𝑖=1    

𝐶𝐶 = ( 1
𝑛𝑛−1) ∑ (𝑡𝑡𝑖𝑖

𝑛𝑛
𝑖𝑖=1 − 𝑡𝑡̅ ) (𝑡𝑡𝑖𝑖 − 𝑡𝑡̅ )′,   

 

 

The MD for each observation is defined as follows: 

 (1)                                            

where T(X) is the mean vector (( 𝑡𝑡 ̅) √𝑛𝑛  

 

) and C(X) is the 
variance covariance matrix (C). The MD is one of the 
most commonly used measures for the detection of 
HLPs.  However, it is now evident that the MD is not very 
successful in the detection of HLPs because it is based on 
the classical mean vector, T(X)  and classical covariance 

matrix, C(X) which is very sensitive to outliers. To remedy 
this problem, Rousseeuw and Leroy (1987) proposed 
substituting the classical mean vector, T(X) and classical 
covariance matrix, C(X) of MDi with robust estimates 
such as the Minimum Volume Ellipsoid (MVE) and the 
Minimum Covariance Determinant (MCD) (Rousseeuw 
& Yohai 1984), and renamed the MD in Equation (1) 
as Robust Mahalanobis Distance (RMD). Other robust 
estimators of location and scatter can be employed to 
compute RMD. The Reweighted Fast Consistent and 
High breakdown (RFCH) estimator established by Olive 
and Hawkins (2010) has been proven to be a very fast 
estimators of location and scatter. The ( 𝑡𝑡 ̅) √𝑛𝑛  

 

consistent 
estimator of Devlin Ganadesikan Kettenring (DGK) 
(Devlin, Gnanadesikan & Kettenring 1981) and high 
breakdown Median Ball (MB) (Olive & Hawkins 2008) 
estimator are used as attractors in the algorithm of RFCH 
which can be presented in the following three stages: 

STAGE 1: The Algorithm of DGK
Step 1 Compute the initial Mahalanobis Distance

 (2)  

where the initial points (T0,Start, C0,Start) is based on the 
computed values of  p-dimensional row vector of location 
and the (p×p) covariance matrix, (T(X), C(X)) of the 
original data.                                                                                             

Step 2 The MDi0,DGK in Step 1 is then sorted in increasing 
order to compute its median, MED = median(MDi0,DGK)
Next, a new dataset which comprise of m observations 
are defined such that their Mahalanobis Distance values 
are less than MED: 

 (3) 

 where p is the number of independent variables.

Step 3 Acquire the first attractors (T1,DGK), C1,DGK by 
calculating the location and scatter estimators for the    
𝑋̃𝑋1,𝐷𝐷𝐷𝐷𝐷𝐷  dataset. 

Step 4 Compare 𝐶𝐶1,𝐷𝐷𝐷𝐷𝐷𝐷 with 𝐶𝐶0,𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆. Stop the process if the diagonal elements of  

𝐶𝐶1,𝐷𝐷𝐷𝐷𝐷𝐷 = 𝐶𝐶0,𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆, otherwise repeat Steps 1 to 3 until convergence. The final location and 
scatter estimates (𝑇𝑇𝐾𝐾,𝐷𝐷𝐷𝐷𝐷𝐷, 𝐶𝐶𝐾𝐾,𝐷𝐷𝐷𝐷𝐷𝐷) is obtained from the 𝑋̃𝑋𝐾𝐾,𝐷𝐷𝐷𝐷𝐷𝐷, 

 dataset.

Step 4 Compare C1,DGK with C0,Start. Stop the process if 
the diagonal elements of C1,DGK = C0,Start , otherwise repeat 

𝑀𝑀𝑀𝑀𝑖𝑖 = √(𝑡𝑡𝑖𝑖 − 𝑇𝑇(𝑋𝑋))′𝐶𝐶(𝑋𝑋)−1 (𝑡𝑡𝑖𝑖 − 𝑇𝑇(𝑋𝑋))                        𝑖𝑖 = 1,2, … , 𝑛𝑛,            
                                 
 

𝑀𝑀𝑀𝑀𝑖𝑖0,𝐷𝐷𝐷𝐷𝐷𝐷 = √(𝑡𝑡𝑖𝑖 − 𝑇𝑇0,𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆)′(𝐶𝐶0,𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆)−1(𝑡𝑡𝑖𝑖 − 𝑇𝑇0,𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆),     𝑖𝑖 = 1,2, … , 𝑛𝑛.              
 
𝑋̃𝑋1,𝐷𝐷𝐷𝐷𝐷𝐷 = {𝑋𝑋𝑗𝑗𝑗𝑗: 𝑀𝑀𝑀𝑀𝑖𝑖0,𝐷𝐷𝐷𝐷𝐷𝐷 ≤ 𝑀𝑀𝑀𝑀𝑀𝑀},  𝑗𝑗 = 1,2, … , 𝑚𝑚;  𝑙𝑙 = 1,2, … , 𝑝𝑝,                                                            

𝑀𝑀𝑀𝑀𝑖𝑖 = √(𝑡𝑡𝑖𝑖 − 𝑇𝑇(𝑋𝑋))′𝐶𝐶(𝑋𝑋)−1 (𝑡𝑡𝑖𝑖 − 𝑇𝑇(𝑋𝑋))                        𝑖𝑖 = 1,2, … , 𝑛𝑛,            
                                 
 

𝑀𝑀𝑀𝑀𝑖𝑖0,𝐷𝐷𝐷𝐷𝐷𝐷 = √(𝑡𝑡𝑖𝑖 − 𝑇𝑇0,𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆)′(𝐶𝐶0,𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆)−1(𝑡𝑡𝑖𝑖 − 𝑇𝑇0,𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆),     𝑖𝑖 = 1,2, … , 𝑛𝑛.              
 
𝑋̃𝑋1,𝐷𝐷𝐷𝐷𝐷𝐷 = {𝑋𝑋𝑗𝑗𝑗𝑗: 𝑀𝑀𝑀𝑀𝑖𝑖0,𝐷𝐷𝐷𝐷𝐷𝐷 ≤ 𝑀𝑀𝑀𝑀𝑀𝑀},  𝑗𝑗 = 1,2, … , 𝑚𝑚;  𝑙𝑙 = 1,2, … , 𝑝𝑝,                                                            

𝑀𝑀𝑀𝑀𝑖𝑖 = √(𝑡𝑡𝑖𝑖 − 𝑇𝑇(𝑋𝑋))′𝐶𝐶(𝑋𝑋)−1 (𝑡𝑡𝑖𝑖 − 𝑇𝑇(𝑋𝑋))                        𝑖𝑖 = 1,2, … , 𝑛𝑛,            
                                 
 

𝑀𝑀𝑀𝑀𝑖𝑖0,𝐷𝐷𝐷𝐷𝐷𝐷 = √(𝑡𝑡𝑖𝑖 − 𝑇𝑇0,𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆)′(𝐶𝐶0,𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆)−1(𝑡𝑡𝑖𝑖 − 𝑇𝑇0,𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆),     𝑖𝑖 = 1,2, … , 𝑛𝑛.              
 
𝑋̃𝑋1,𝐷𝐷𝐷𝐷𝐷𝐷 = {𝑋𝑋𝑗𝑗𝑗𝑗: 𝑀𝑀𝑀𝑀𝑖𝑖0,𝐷𝐷𝐷𝐷𝐷𝐷 ≤ 𝑀𝑀𝑀𝑀𝑀𝑀},  𝑗𝑗 = 1,2, … , 𝑚𝑚;  𝑙𝑙 = 1,2, … , 𝑝𝑝,                                                            

𝑀𝑀𝑀𝑀𝑖𝑖 = √(𝑡𝑡𝑖𝑖 − 𝑇𝑇(𝑋𝑋))′𝐶𝐶(𝑋𝑋)−1 (𝑡𝑡𝑖𝑖 − 𝑇𝑇(𝑋𝑋))                        𝑖𝑖 = 1,2, … , 𝑛𝑛,            
                                 
 

𝑀𝑀𝑀𝑀𝑖𝑖0,𝐷𝐷𝐷𝐷𝐷𝐷 = √(𝑡𝑡𝑖𝑖 − 𝑇𝑇0,𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆)′(𝐶𝐶0,𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆)−1(𝑡𝑡𝑖𝑖 − 𝑇𝑇0,𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆),     𝑖𝑖 = 1,2, … , 𝑛𝑛.              
 
𝑋̃𝑋1,𝐷𝐷𝐷𝐷𝐷𝐷 = {𝑋𝑋𝑗𝑗𝑗𝑗: 𝑀𝑀𝑀𝑀𝑖𝑖0,𝐷𝐷𝐷𝐷𝐷𝐷 ≤ 𝑀𝑀𝑀𝑀𝑀𝑀},  𝑗𝑗 = 1,2, … , 𝑚𝑚;  𝑙𝑙 = 1,2, … , 𝑝𝑝,                                                            
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𝑀𝑀𝑀𝑀𝑖𝑖0,𝐷𝐷𝐷𝐷𝐷𝐷 = √(𝑡𝑡𝑖𝑖 − 𝑇𝑇0,𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆)′(𝐶𝐶0,𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆)−1(𝑡𝑡𝑖𝑖 − 𝑇𝑇0,𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆),     𝑖𝑖 = 1,2, … , 𝑛𝑛.              
 
𝑋̃𝑋1,𝐷𝐷𝐷𝐷𝐷𝐷 = {𝑋𝑋𝑗𝑗𝑗𝑗: 𝑀𝑀𝑀𝑀𝑖𝑖0,𝐷𝐷𝐷𝐷𝐷𝐷 ≤ 𝑀𝑀𝑀𝑀𝑀𝑀},  𝑗𝑗 = 1,2, … , 𝑚𝑚;  𝑙𝑙 = 1,2, … , 𝑝𝑝,                                                            

𝑀𝑀𝑀𝑀𝑖𝑖 = √(𝑡𝑡𝑖𝑖 − 𝑇𝑇(𝑋𝑋))′𝐶𝐶(𝑋𝑋)−1 (𝑡𝑡𝑖𝑖 − 𝑇𝑇(𝑋𝑋))                        𝑖𝑖 = 1,2, … , 𝑛𝑛,            
                                 
 

𝑀𝑀𝑀𝑀𝑖𝑖0,𝐷𝐷𝐷𝐷𝐷𝐷 = √(𝑡𝑡𝑖𝑖 − 𝑇𝑇0,𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆)′(𝐶𝐶0,𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆)−1(𝑡𝑡𝑖𝑖 − 𝑇𝑇0,𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆),     𝑖𝑖 = 1,2, … , 𝑛𝑛.              
 
𝑋̃𝑋1,𝐷𝐷𝐷𝐷𝐷𝐷 = {𝑋𝑋𝑗𝑗𝑗𝑗: 𝑀𝑀𝑀𝑀𝑖𝑖0,𝐷𝐷𝐷𝐷𝐷𝐷 ≤ 𝑀𝑀𝑀𝑀𝑀𝑀},  𝑗𝑗 = 1,2, … , 𝑚𝑚;  𝑙𝑙 = 1,2, … , 𝑝𝑝,                                                            



3592	

Steps 1 to 3 until convergence. The final location and 
scatter estimates (TK,DGK,CK,DGK) is obtained from the

𝑋̃𝑋1,𝐷𝐷𝐷𝐷𝐷𝐷  dataset. 

Step 4 Compare 𝐶𝐶1,𝐷𝐷𝐷𝐷𝐷𝐷 with 𝐶𝐶0,𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆. Stop the process if the diagonal elements of  

𝐶𝐶1,𝐷𝐷𝐷𝐷𝐷𝐷 = 𝐶𝐶0,𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆, otherwise repeat Steps 1 to 3 until convergence. The final location and 
scatter estimates (𝑇𝑇𝐾𝐾,𝐷𝐷𝐷𝐷𝐷𝐷, 𝐶𝐶𝐾𝐾,𝐷𝐷𝐷𝐷𝐷𝐷) is obtained from the 𝑋̃𝑋𝐾𝐾,𝐷𝐷𝐷𝐷𝐷𝐷, , where K is final step at which convergence 

takes place.

STAGE 2: The Algorithm of MB
Step 1 Let an identity matrix, Ip be the scatter matrix, 
i.e., C = Ip. Next, calculate the Mahalanobis Distance:    
 

(4)  

 where  Med (X) = median (X). 
 
 Let define the cut-off point of MDi, i.e., Lcut :  

 (5)                    

where Lcut ≠ 0.5. Next, establish a new dataset, 

Step 3 Acquire the first attractors ( 𝑇𝑇1,𝐷𝐷𝐷𝐷𝐷𝐷, 𝐶𝐶1,𝐷𝐷𝐷𝐷𝐷𝐷 ) by calculating the location and scatter 

estimators for the  𝑋̃𝑋1,𝐷𝐷𝐷𝐷𝐷𝐷  dataset. 

Step 4 Compare 𝐶𝐶1,𝐷𝐷𝐷𝐷𝐷𝐷 with 𝐶𝐶0,𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆. Stop the process if the diagonal elements of  

𝐶𝐶1,𝐷𝐷𝐷𝐷𝐷𝐷 = 𝐶𝐶0,𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆, otherwise repeat Steps 1 to 3 until convergence. The final location and 

scatter estimates (𝑇𝑇𝐾𝐾,𝐷𝐷𝐷𝐷𝐷𝐷, 𝐶𝐶𝐾𝐾,𝐷𝐷𝐷𝐷𝐷𝐷) is obtained from the 𝑋̃𝑋𝐾𝐾,𝐷𝐷𝐷𝐷𝐷𝐷, where 𝐾𝐾 is final step at which 

convergence takes place. 

STAGE 2: The Algorithm of MB 

Step 1 Let an identity matrix, 𝐼𝐼𝑝𝑝 be the scatter matrix, i.e., 𝐶𝐶 = 𝐼𝐼𝑝𝑝. Next, calculate the 

Mahalanobis Distance:     

𝑀𝑀𝑀𝑀𝑖𝑖 = √(𝑡𝑡𝑖𝑖−𝑀𝑀𝑀𝑀𝑀𝑀(𝑋𝑋))′ (𝐶𝐶)−1(𝑡𝑡i − 𝑀𝑀𝑀𝑀𝑀𝑀(𝑋𝑋))  ,  𝑖𝑖 = 1,2, … , 𝑛𝑛,                                          (4)   

where  𝑀𝑀𝑀𝑀𝑀𝑀(𝑋𝑋) = median (𝑋𝑋).   

 Let define the cut-off point of 𝑀𝑀𝑀𝑀𝑖𝑖,, i.e., 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 :  

                       𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 = median(𝑀𝑀𝑀𝑀𝑖𝑖)                                                                               (5)                     

where  𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 ≠ 0.5.  Next, establish a new dataset, 𝑋̃𝑋0  which contain only 𝑚𝑚 observations such 

that it’s 𝑀𝑀𝑀𝑀𝑖𝑖 is less than or equal to the 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 

   𝑋̃𝑋0 = {𝑋𝑋𝑗𝑗𝑗𝑗: 𝑀𝑀𝑀𝑀𝑖𝑖 ≤ 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿},  𝑗𝑗 = 1,2, … , 𝑚𝑚;  𝑙𝑙 = 1,2, … , 𝑝𝑝.                                                     (6)                                   

Step 2 Compute the initial Mahalanobis Distance. 

 𝑀𝑀𝑀𝑀𝑖𝑖0,𝑀𝑀𝑀𝑀 = √(𝑡𝑡𝑖𝑖−𝑇𝑇0,𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆)′(𝐶𝐶0,𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆)−1(𝑡𝑡𝑖𝑖 − 𝑇𝑇0,𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆) 𝑖𝑖 = 1,2, … , 𝑛𝑛,                                           (7)                   

where 𝑇𝑇0,𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 is the 𝑝𝑝 − dimensional row vector of location and 𝐶𝐶0,𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 is the (𝑝𝑝 × 𝑝𝑝)   

  
which contain only m observations such that it’s MDi is 
less than or equal to the Lcut,

 (6)           
                       
Step 2 Compute the initial Mahalanobis Distance.

 (7)                  

where T0,Start is the p- dimensional row vector of location 
and C0,Start is the (p × p) covariance matrix calculated 
based on the new dataset, 

Step 3 Acquire the first attractors ( 𝑇𝑇1,𝐷𝐷𝐷𝐷𝐷𝐷, 𝐶𝐶1,𝐷𝐷𝐷𝐷𝐷𝐷 ) by calculating the location and scatter 

estimators for the  𝑋̃𝑋1,𝐷𝐷𝐷𝐷𝐷𝐷  dataset. 

Step 4 Compare 𝐶𝐶1,𝐷𝐷𝐷𝐷𝐷𝐷 with 𝐶𝐶0,𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆. Stop the process if the diagonal elements of  

𝐶𝐶1,𝐷𝐷𝐷𝐷𝐷𝐷 = 𝐶𝐶0,𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆, otherwise repeat Steps 1 to 3 until convergence. The final location and 

scatter estimates (𝑇𝑇𝐾𝐾,𝐷𝐷𝐷𝐷𝐷𝐷, 𝐶𝐶𝐾𝐾,𝐷𝐷𝐷𝐷𝐷𝐷) is obtained from the 𝑋̃𝑋𝐾𝐾,𝐷𝐷𝐷𝐷𝐷𝐷, where 𝐾𝐾 is final step at which 

convergence takes place. 

STAGE 2: The Algorithm of MB 

Step 1 Let an identity matrix, 𝐼𝐼𝑝𝑝 be the scatter matrix, i.e., 𝐶𝐶 = 𝐼𝐼𝑝𝑝. Next, calculate the 

Mahalanobis Distance:     

𝑀𝑀𝑀𝑀𝑖𝑖 = √(𝑡𝑡𝑖𝑖−𝑀𝑀𝑀𝑀𝑀𝑀(𝑋𝑋))′ (𝐶𝐶)−1(𝑡𝑡i − 𝑀𝑀𝑀𝑀𝑀𝑀(𝑋𝑋))  ,  𝑖𝑖 = 1,2, … , 𝑛𝑛,                                          (4)   

where  𝑀𝑀𝑀𝑀𝑀𝑀(𝑋𝑋) = median (𝑋𝑋).   

 Let define the cut-off point of 𝑀𝑀𝑀𝑀𝑖𝑖,, i.e., 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 :  

                       𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 = median(𝑀𝑀𝑀𝑀𝑖𝑖)                                                                               (5)                     

where  𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 ≠ 0.5.  Next, establish a new dataset, 𝑋̃𝑋0  which contain only 𝑚𝑚 observations such 

that it’s 𝑀𝑀𝑀𝑀𝑖𝑖 is less than or equal to the 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 

   𝑋̃𝑋0 = {𝑋𝑋𝑗𝑗𝑗𝑗: 𝑀𝑀𝑀𝑀𝑖𝑖 ≤ 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿},  𝑗𝑗 = 1,2, … , 𝑚𝑚;  𝑙𝑙 = 1,2, … , 𝑝𝑝.                                                     (6)                                   

Step 2 Compute the initial Mahalanobis Distance. 

 𝑀𝑀𝑀𝑀𝑖𝑖0,𝑀𝑀𝑀𝑀 = √(𝑡𝑡𝑖𝑖−𝑇𝑇0,𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆)′(𝐶𝐶0,𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆)−1(𝑡𝑡𝑖𝑖 − 𝑇𝑇0,𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆) 𝑖𝑖 = 1,2, … , 𝑛𝑛,                                           (7)                   

where 𝑇𝑇0,𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 is the 𝑝𝑝 − dimensional row vector of location and 𝐶𝐶0,𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 is the (𝑝𝑝 × 𝑝𝑝)   

.
Establish a new dataset (    𝑋̃𝑋1,𝑀𝑀𝑀𝑀 = {𝑋𝑋𝑗𝑗𝑗𝑗:𝑀𝑀𝑀𝑀0𝑖𝑖,𝑀𝑀𝑀𝑀 ≤ 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿0},  𝑗𝑗 = 1,2, … ,𝑚𝑚;  𝑙𝑙 = 1,2,… , 𝑝𝑝.      

 
 

𝑇𝑇𝐹𝐹𝐹𝐹𝐹𝐹 = {𝑇𝑇𝐾𝐾,𝐷𝐷𝐷𝐷𝐷𝐷  𝑖𝑖𝑖𝑖
√|𝐶𝐶𝐾𝐾,𝐷𝐷𝐷𝐷𝐷𝐷|   < √|𝐶𝐶𝐾𝐾,𝑀𝑀𝑀𝑀|

𝑇𝑇𝐾𝐾,𝑀𝑀𝑀𝑀     𝑂𝑂𝑂𝑂ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒
}                                                                          (9) 

𝐶𝐶𝐹𝐹𝐹𝐹𝐹𝐹 =

{ 
 
  
𝑀𝑀𝑀𝑀𝑀𝑀(𝑀𝑀𝑀𝑀𝑖𝑖(𝑇𝑇𝐾𝐾,𝐷𝐷𝐷𝐷𝐷𝐷,𝐶𝐶𝐾𝐾,𝐷𝐷𝐷𝐷𝐷𝐷))

𝑥𝑥2(𝑝𝑝,0.5)
× 𝐶𝐶𝐾𝐾,𝐷𝐷𝐷𝐷𝐷𝐷, 𝑖𝑖𝑖𝑖 √|𝐶𝐶𝐾𝐾,𝐷𝐷𝐷𝐷𝐷𝐷|   < √|𝐶𝐶𝐾𝐾,𝑀𝑀𝑀𝑀|

𝑀𝑀𝑀𝑀𝑀𝑀(𝑀𝑀𝑀𝑀𝑖𝑖(𝑇𝑇𝐾𝐾,𝑀𝑀𝑀𝑀,𝐶𝐶𝐾𝐾,𝑀𝑀𝑀𝑀))
𝑥𝑥2(𝑝𝑝,0.5)

× 𝐶𝐶𝐾𝐾,𝑀𝑀𝑀𝑀    ,       𝑂𝑂𝑂𝑂ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒
} 
 
  

                                    (10) 

and 

               𝐶𝐶𝐹𝐹𝐹𝐹𝐹𝐹∗ = 𝑀𝑀𝑀𝑀𝑀𝑀(𝑀𝑀𝑀𝑀𝑖𝑖(𝑇𝑇𝐹𝐹𝐹𝐹𝐹𝐹,𝐶𝐶𝐹𝐹𝐹𝐹𝐹𝐹))
𝑥𝑥2(𝑝𝑝,0.5)

 × 𝐶𝐶𝐹𝐹𝐹𝐹𝐹𝐹. 

  

) based on a new cut-off 
point: 

                                        
 (8)      

                  
where Lcut0 = median (MDi0,MB).  

Step 3 Compute the attractor (T1,MB,C1,MB) based on the 
new dataset (    𝑋̃𝑋1,𝑀𝑀𝑀𝑀 = {𝑋𝑋𝑗𝑗𝑗𝑗:𝑀𝑀𝑀𝑀0𝑖𝑖,𝑀𝑀𝑀𝑀 ≤ 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿0},  𝑗𝑗 = 1,2, … ,𝑚𝑚;  𝑙𝑙 = 1,2,… , 𝑝𝑝.      

 
 

𝑇𝑇𝐹𝐹𝐹𝐹𝐹𝐹 = {𝑇𝑇𝐾𝐾,𝐷𝐷𝐷𝐷𝐷𝐷  𝑖𝑖𝑖𝑖
√|𝐶𝐶𝐾𝐾,𝐷𝐷𝐷𝐷𝐷𝐷|   < √|𝐶𝐶𝐾𝐾,𝑀𝑀𝑀𝑀|

𝑇𝑇𝐾𝐾,𝑀𝑀𝑀𝑀     𝑂𝑂𝑂𝑂ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒
}                                                                          (9) 

𝐶𝐶𝐹𝐹𝐹𝐹𝐹𝐹 =

{ 
 
  
𝑀𝑀𝑀𝑀𝑀𝑀(𝑀𝑀𝑀𝑀𝑖𝑖(𝑇𝑇𝐾𝐾,𝐷𝐷𝐷𝐷𝐷𝐷,𝐶𝐶𝐾𝐾,𝐷𝐷𝐷𝐷𝐷𝐷))

𝑥𝑥2(𝑝𝑝,0.5)
× 𝐶𝐶𝐾𝐾,𝐷𝐷𝐷𝐷𝐷𝐷, 𝑖𝑖𝑖𝑖 √|𝐶𝐶𝐾𝐾,𝐷𝐷𝐷𝐷𝐷𝐷|   < √|𝐶𝐶𝐾𝐾,𝑀𝑀𝑀𝑀|

𝑀𝑀𝑀𝑀𝑀𝑀(𝑀𝑀𝑀𝑀𝑖𝑖(𝑇𝑇𝐾𝐾,𝑀𝑀𝑀𝑀,𝐶𝐶𝐾𝐾,𝑀𝑀𝑀𝑀))
𝑥𝑥2(𝑝𝑝,0.5)

× 𝐶𝐶𝐾𝐾,𝑀𝑀𝑀𝑀    ,       𝑂𝑂𝑂𝑂ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒
} 
 
  

                                    (10) 

and 

               𝐶𝐶𝐹𝐹𝐹𝐹𝐹𝐹∗ = 𝑀𝑀𝑀𝑀𝑀𝑀(𝑀𝑀𝑀𝑀𝑖𝑖(𝑇𝑇𝐹𝐹𝐹𝐹𝐹𝐹,𝐶𝐶𝐹𝐹𝐹𝐹𝐹𝐹))
𝑥𝑥2(𝑝𝑝,0.5)

 × 𝐶𝐶𝐹𝐹𝐹𝐹𝐹𝐹. 

  

) in Step 2.

Step 4 Stop the process if the diagonal elements of  
C1,MB = C0,Start. Otherwise, recompute the MD1,MB based 
on the attractor (T1,MB,C1,MB). Repeat Steps 2 to 3, until 
convergence. At convergence, the final attractor and the 
final remaining set is represented as (TK,MB,CK,MB) and 
𝑋̃𝑋𝐾𝐾,𝑀𝑀𝑀𝑀, , respectively.

STAGE 3: The Algorithm of the RFCH
In the first step of RFCH, an initial attractors (TFCH,CFCH

*) 
are determined based on the final attractors of DGK and 
MB estimators.

Step 1 Define TFCH and CFCH as follows:

 (9)

 (10)

and

Here,Here, 𝑥𝑥(𝑝𝑝,0.5)2  denotes the chi-square distribution with 𝑝𝑝 degrees of freedom and a significance  denotes the chi-square distribution with 
p degrees of freedom and a significance level of 0.5. 
Olive and Hawkins (2010) noted (in Theorem 1), that 
the (TFCH,CFCH

*) are consistent estimators. 

Step 2  A new dataset, 

Here, 𝑥𝑥(𝑝𝑝,0.5)
2  denotes the chi-square distribution with 𝑝𝑝 degrees of freedom and a significance  

 

  𝑋̃𝑋𝐹𝐹𝐹𝐹𝐹𝐹 = {𝑋𝑋𝑗𝑗𝑗𝑗: 𝑀𝑀𝑀𝑀𝑖𝑖(𝑇𝑇𝐹𝐹𝐹𝐹𝐹𝐹, 𝐶𝐶𝐹𝐹𝐹𝐹𝐹𝐹
∗ ) ≤ 𝑥𝑥2(𝑝𝑝,1−𝛼𝛼)},          𝑗𝑗 = 1,2, … , 𝑚𝑚; 𝑙𝑙 = 1,2, … , 𝑝𝑝    

 
    
 

               𝐶𝐶1,𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅
∗ = 𝑀𝑀𝑀𝑀𝑀𝑀(𝑀𝑀𝑀𝑀𝑖𝑖(𝑇𝑇1,𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅,𝐶𝐶1,𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅))

𝑥𝑥2(𝑝𝑝,0.5)
× 𝐶𝐶1,𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅.                           

 
 
𝑋̃𝑋2,𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = {𝑋𝑋𝑗𝑗𝑗𝑗: 𝑀𝑀𝑀𝑀𝑖𝑖(𝑇𝑇1,𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅, 𝐶𝐶1,𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅

∗ ) ≤ 𝑥𝑥2(𝑝𝑝,1−𝛼𝛼)},  𝑗𝑗 = 1,2, … , 𝑚𝑚; 𝑙𝑙 = 1,2, … , 𝑝𝑝.                                                                          

 is constructed as follows:   
                                  

(11)

where MDi (TFCH,CFCH
*) represents the Mahalanobis 

Distance based on the location and scatter (TFCH,CFCH
*) 

obtained from Step 1. Based on the new dataset,

Here, 𝑥𝑥(𝑝𝑝,0.5)
2  denotes the chi-square distribution with 𝑝𝑝 degrees of freedom and a significance  
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∗ ) ≤ 𝑥𝑥2(𝑝𝑝,1−𝛼𝛼)},          𝑗𝑗 = 1,2, … , 𝑚𝑚; 𝑙𝑙 = 1,2, … , 𝑝𝑝    
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than 𝑥𝑥(𝑝𝑝,0.05)

2   
 
 
Breakdown (HB) √𝑛𝑛    
 
 

𝑅𝑅𝑅𝑅𝑅𝑅𝑖𝑖 = √(𝑡𝑡𝑖𝑖 − 𝑇𝑇𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅)′(𝐶𝐶𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅)−1(𝑡𝑡𝑖𝑖 − 𝑇𝑇𝑅𝑅𝑅𝑅𝐶𝐶𝐶𝐶)  , 𝑖𝑖 = 1,2, … , 𝑛𝑛. 

𝑋𝑋 = [𝑋𝑋𝑅𝑅
𝑋𝑋𝐷𝐷

],    𝑌𝑌 = [𝑌𝑌𝑅𝑅
𝑌𝑌𝐷𝐷

] 

Step 4 For the clean ‘R’ group, estimate the parameters of the linear model, 𝛽̂𝛽𝑅𝑅 as follows 

𝛽̂𝛽𝑅𝑅 = (𝑋𝑋𝑅𝑅
𝑇𝑇𝑋𝑋𝑅𝑅)−1𝑋𝑋𝑅𝑅

𝑇𝑇𝑌𝑌𝑅𝑅 

Then compute the residual, 𝑟𝑟𝑖𝑖(𝑅𝑅) = 𝑌𝑌𝑖𝑖 − 𝑋𝑋𝑖𝑖𝛽̂𝛽𝑅𝑅. 

Step 5 The Robust and fast generalized Studentized residual (RFGSR), indicated by 𝑅𝑅𝑓𝑓𝑓𝑓𝑖𝑖
∗is 

then computed for the detection of multiple outliers  

 

 

Step 3 Acquire the first attractors ( 𝑇𝑇1,𝐷𝐷𝐷𝐷𝐷𝐷, 𝐶𝐶1,𝐷𝐷𝐷𝐷𝐷𝐷 ) by calculating the location and scatter 

estimators for the  𝑋̃𝑋1,𝐷𝐷𝐷𝐷𝐷𝐷  dataset. 

Step 4 Compare 𝐶𝐶1,𝐷𝐷𝐷𝐷𝐷𝐷 with 𝐶𝐶0,𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆. Stop the process if the diagonal elements of  

𝐶𝐶1,𝐷𝐷𝐷𝐷𝐷𝐷 = 𝐶𝐶0,𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆, otherwise repeat Steps 1 to 3 until convergence. The final location and 

scatter estimates (𝑇𝑇𝐾𝐾,𝐷𝐷𝐷𝐷𝐷𝐷, 𝐶𝐶𝐾𝐾,𝐷𝐷𝐷𝐷𝐷𝐷) is obtained from the 𝑋̃𝑋𝐾𝐾,𝐷𝐷𝐷𝐷𝐷𝐷, where 𝐾𝐾 is final step at which 

convergence takes place. 

STAGE 2: The Algorithm of MB 

Step 1 Let an identity matrix, 𝐼𝐼𝑝𝑝 be the scatter matrix, i.e., 𝐶𝐶 = 𝐼𝐼𝑝𝑝. Next, calculate the 

Mahalanobis Distance:     

𝑀𝑀𝑀𝑀𝑖𝑖 = √(𝑡𝑡𝑖𝑖−𝑀𝑀𝑀𝑀𝑀𝑀(𝑋𝑋))′ (𝐶𝐶)−1(𝑡𝑡i − 𝑀𝑀𝑀𝑀𝑀𝑀(𝑋𝑋))  ,  𝑖𝑖 = 1,2, … , 𝑛𝑛,                                          (4)   

where  𝑀𝑀𝑀𝑀𝑀𝑀(𝑋𝑋) = median (𝑋𝑋).   

 Let define the cut-off point of 𝑀𝑀𝑀𝑀𝑖𝑖,, i.e., 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 :  

                       𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 = median(𝑀𝑀𝑀𝑀𝑖𝑖)                                                                               (5)                     

where  𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 ≠ 0.5.  Next, establish a new dataset, 𝑋̃𝑋0  which contain only 𝑚𝑚 observations such 

that it’s 𝑀𝑀𝑀𝑀𝑖𝑖 is less than or equal to the 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 

   𝑋̃𝑋0 = {𝑋𝑋𝑗𝑗𝑗𝑗: 𝑀𝑀𝑀𝑀𝑖𝑖 ≤ 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿},  𝑗𝑗 = 1,2, … , 𝑚𝑚;  𝑙𝑙 = 1,2, … , 𝑝𝑝.                                                     (6)                                   

Step 2 Compute the initial Mahalanobis Distance. 

 𝑀𝑀𝑀𝑀𝑖𝑖0,𝑀𝑀𝑀𝑀 = √(𝑡𝑡𝑖𝑖−𝑇𝑇0,𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆)′(𝐶𝐶0,𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆)−1(𝑡𝑡𝑖𝑖 − 𝑇𝑇0,𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆) 𝑖𝑖 = 1,2, … , 𝑛𝑛,                                           (7)                   

where 𝑇𝑇0,𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 is the 𝑝𝑝 − dimensional row vector of location and 𝐶𝐶0,𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 is the (𝑝𝑝 × 𝑝𝑝)   

Step 3 Acquire the first attractors ( 𝑇𝑇1,𝐷𝐷𝐷𝐷𝐷𝐷, 𝐶𝐶1,𝐷𝐷𝐷𝐷𝐷𝐷 ) by calculating the location and scatter 

estimators for the  𝑋̃𝑋1,𝐷𝐷𝐷𝐷𝐷𝐷  dataset. 

Step 4 Compare 𝐶𝐶1,𝐷𝐷𝐷𝐷𝐷𝐷 with 𝐶𝐶0,𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆. Stop the process if the diagonal elements of  

𝐶𝐶1,𝐷𝐷𝐷𝐷𝐷𝐷 = 𝐶𝐶0,𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆, otherwise repeat Steps 1 to 3 until convergence. The final location and 

scatter estimates (𝑇𝑇𝐾𝐾,𝐷𝐷𝐷𝐷𝐷𝐷, 𝐶𝐶𝐾𝐾,𝐷𝐷𝐷𝐷𝐷𝐷) is obtained from the 𝑋̃𝑋𝐾𝐾,𝐷𝐷𝐷𝐷𝐷𝐷, where 𝐾𝐾 is final step at which 

convergence takes place. 

STAGE 2: The Algorithm of MB 
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Step 2 Compute the initial Mahalanobis Distance. 
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𝑀𝑀𝑀𝑀𝑖𝑖 = √(𝑡𝑡𝑖𝑖−𝑀𝑀𝑀𝑀𝑀𝑀(𝑋𝑋))′ (𝐶𝐶)−1(𝑡𝑡i − 𝑀𝑀𝑀𝑀𝑀𝑀(𝑋𝑋))  ,  𝑖𝑖 = 1,2, … , 𝑛𝑛,                                          (4)   

where  𝑀𝑀𝑀𝑀𝑀𝑀(𝑋𝑋) = median (𝑋𝑋).   

 Let define the cut-off point of 𝑀𝑀𝑀𝑀𝑖𝑖,, i.e., 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 :  

                       𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 = median(𝑀𝑀𝑀𝑀𝑖𝑖)                                                                               (5)                     

where  𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 ≠ 0.5.  Next, establish a new dataset, 𝑋̃𝑋0  which contain only 𝑚𝑚 observations such 

that it’s 𝑀𝑀𝑀𝑀𝑖𝑖 is less than or equal to the 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 

   𝑋̃𝑋0 = {𝑋𝑋𝑗𝑗𝑗𝑗: 𝑀𝑀𝑀𝑀𝑖𝑖 ≤ 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿},  𝑗𝑗 = 1,2, … , 𝑚𝑚;  𝑙𝑙 = 1,2, … , 𝑝𝑝.                                                     (6)                                   

Step 2 Compute the initial Mahalanobis Distance. 

 𝑀𝑀𝑀𝑀𝑖𝑖0,𝑀𝑀𝑀𝑀 = √(𝑡𝑡𝑖𝑖−𝑇𝑇0,𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆)′(𝐶𝐶0,𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆)−1(𝑡𝑡𝑖𝑖 − 𝑇𝑇0,𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆) 𝑖𝑖 = 1,2, … , 𝑛𝑛,                                           (7)                   

where 𝑇𝑇0,𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 is the 𝑝𝑝 − dimensional row vector of location and 𝐶𝐶0,𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 is the (𝑝𝑝 × 𝑝𝑝)   

Step 3 Acquire the first attractors ( 𝑇𝑇1,𝐷𝐷𝐷𝐷𝐷𝐷, 𝐶𝐶1,𝐷𝐷𝐷𝐷𝐷𝐷 ) by calculating the location and scatter 

estimators for the  𝑋̃𝑋1,𝐷𝐷𝐷𝐷𝐷𝐷  dataset. 

Step 4 Compare 𝐶𝐶1,𝐷𝐷𝐷𝐷𝐷𝐷 with 𝐶𝐶0,𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆. Stop the process if the diagonal elements of  

𝐶𝐶1,𝐷𝐷𝐷𝐷𝐷𝐷 = 𝐶𝐶0,𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆, otherwise repeat Steps 1 to 3 until convergence. The final location and 

scatter estimates (𝑇𝑇𝐾𝐾,𝐷𝐷𝐷𝐷𝐷𝐷, 𝐶𝐶𝐾𝐾,𝐷𝐷𝐷𝐷𝐷𝐷) is obtained from the 𝑋̃𝑋𝐾𝐾,𝐷𝐷𝐷𝐷𝐷𝐷, where 𝐾𝐾 is final step at which 

convergence takes place. 

STAGE 2: The Algorithm of MB 

Step 1 Let an identity matrix, 𝐼𝐼𝑝𝑝 be the scatter matrix, i.e., 𝐶𝐶 = 𝐼𝐼𝑝𝑝. Next, calculate the 

Mahalanobis Distance:     

𝑀𝑀𝑀𝑀𝑖𝑖 = √(𝑡𝑡𝑖𝑖−𝑀𝑀𝑀𝑀𝑀𝑀(𝑋𝑋))′ (𝐶𝐶)−1(𝑡𝑡i − 𝑀𝑀𝑀𝑀𝑀𝑀(𝑋𝑋))  ,  𝑖𝑖 = 1,2, … , 𝑛𝑛,                                          (4)   

where  𝑀𝑀𝑀𝑀𝑀𝑀(𝑋𝑋) = median (𝑋𝑋).   

 Let define the cut-off point of 𝑀𝑀𝑀𝑀𝑖𝑖,, i.e., 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 :  

                       𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 = median(𝑀𝑀𝑀𝑀𝑖𝑖)                                                                               (5)                     

where  𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 ≠ 0.5.  Next, establish a new dataset, 𝑋̃𝑋0  which contain only 𝑚𝑚 observations such 

that it’s 𝑀𝑀𝑀𝑀𝑖𝑖 is less than or equal to the 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 

   𝑋̃𝑋0 = {𝑋𝑋𝑗𝑗𝑗𝑗: 𝑀𝑀𝑀𝑀𝑖𝑖 ≤ 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿},  𝑗𝑗 = 1,2, … , 𝑚𝑚;  𝑙𝑙 = 1,2, … , 𝑝𝑝.                                                     (6)                                   

Step 2 Compute the initial Mahalanobis Distance. 

 𝑀𝑀𝑀𝑀𝑖𝑖0,𝑀𝑀𝑀𝑀 = √(𝑡𝑡𝑖𝑖−𝑇𝑇0,𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆)′(𝐶𝐶0,𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆)−1(𝑡𝑡𝑖𝑖 − 𝑇𝑇0,𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆) 𝑖𝑖 = 1,2, … , 𝑛𝑛,                                           (7)                   

where 𝑇𝑇0,𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 is the 𝑝𝑝 − dimensional row vector of location and 𝐶𝐶0,𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 is the (𝑝𝑝 × 𝑝𝑝)   

Step 3 Acquire the first attractors ( 𝑇𝑇1,𝐷𝐷𝐷𝐷𝐷𝐷, 𝐶𝐶1,𝐷𝐷𝐷𝐷𝐷𝐷 ) by calculating the location and scatter 

estimators for the  𝑋̃𝑋1,𝐷𝐷𝐷𝐷𝐷𝐷  dataset. 

Step 4 Compare 𝐶𝐶1,𝐷𝐷𝐷𝐷𝐷𝐷 with 𝐶𝐶0,𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆. Stop the process if the diagonal elements of  

𝐶𝐶1,𝐷𝐷𝐷𝐷𝐷𝐷 = 𝐶𝐶0,𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆, otherwise repeat Steps 1 to 3 until convergence. The final location and 

scatter estimates (𝑇𝑇𝐾𝐾,𝐷𝐷𝐷𝐷𝐷𝐷, 𝐶𝐶𝐾𝐾,𝐷𝐷𝐷𝐷𝐷𝐷) is obtained from the 𝑋̃𝑋𝐾𝐾,𝐷𝐷𝐷𝐷𝐷𝐷, where 𝐾𝐾 is final step at which 

convergence takes place. 

STAGE 2: The Algorithm of MB 

Step 1 Let an identity matrix, 𝐼𝐼𝑝𝑝 be the scatter matrix, i.e., 𝐶𝐶 = 𝐼𝐼𝑝𝑝. Next, calculate the 

Mahalanobis Distance:     

𝑀𝑀𝑀𝑀𝑖𝑖 = √(𝑡𝑡𝑖𝑖−𝑀𝑀𝑀𝑀𝑀𝑀(𝑋𝑋))′ (𝐶𝐶)−1(𝑡𝑡i − 𝑀𝑀𝑀𝑀𝑀𝑀(𝑋𝑋))  ,  𝑖𝑖 = 1,2, … , 𝑛𝑛,                                          (4)   

where  𝑀𝑀𝑀𝑀𝑀𝑀(𝑋𝑋) = median (𝑋𝑋).   

 Let define the cut-off point of 𝑀𝑀𝑀𝑀𝑖𝑖,, i.e., 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 :  

                       𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 = median(𝑀𝑀𝑀𝑀𝑖𝑖)                                                                               (5)                     

where  𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 ≠ 0.5.  Next, establish a new dataset, 𝑋̃𝑋0  which contain only 𝑚𝑚 observations such 

that it’s 𝑀𝑀𝑀𝑀𝑖𝑖 is less than or equal to the 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 

   𝑋̃𝑋0 = {𝑋𝑋𝑗𝑗𝑗𝑗: 𝑀𝑀𝑀𝑀𝑖𝑖 ≤ 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿},  𝑗𝑗 = 1,2, … , 𝑚𝑚;  𝑙𝑙 = 1,2, … , 𝑝𝑝.                                                     (6)                                   

Step 2 Compute the initial Mahalanobis Distance. 

 𝑀𝑀𝑀𝑀𝑖𝑖0,𝑀𝑀𝑀𝑀 = √(𝑡𝑡𝑖𝑖−𝑇𝑇0,𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆)′(𝐶𝐶0,𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆)−1(𝑡𝑡𝑖𝑖 − 𝑇𝑇0,𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆) 𝑖𝑖 = 1,2, … , 𝑛𝑛,                                           (7)                   

where 𝑇𝑇0,𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 is the 𝑝𝑝 − dimensional row vector of location and 𝐶𝐶0,𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 is the (𝑝𝑝 × 𝑝𝑝)   

Step 3 Acquire the first attractors ( 𝑇𝑇1,𝐷𝐷𝐷𝐷𝐷𝐷, 𝐶𝐶1,𝐷𝐷𝐷𝐷𝐷𝐷 ) by calculating the location and scatter 

estimators for the  𝑋̃𝑋1,𝐷𝐷𝐷𝐷𝐷𝐷  dataset. 

Step 4 Compare 𝐶𝐶1,𝐷𝐷𝐷𝐷𝐷𝐷 with 𝐶𝐶0,𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆. Stop the process if the diagonal elements of  

𝐶𝐶1,𝐷𝐷𝐷𝐷𝐷𝐷 = 𝐶𝐶0,𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆, otherwise repeat Steps 1 to 3 until convergence. The final location and 

scatter estimates (𝑇𝑇𝐾𝐾,𝐷𝐷𝐷𝐷𝐷𝐷, 𝐶𝐶𝐾𝐾,𝐷𝐷𝐷𝐷𝐷𝐷) is obtained from the 𝑋̃𝑋𝐾𝐾,𝐷𝐷𝐷𝐷𝐷𝐷, where 𝐾𝐾 is final step at which 

convergence takes place. 

STAGE 2: The Algorithm of MB 

Step 1 Let an identity matrix, 𝐼𝐼𝑝𝑝 be the scatter matrix, i.e., 𝐶𝐶 = 𝐼𝐼𝑝𝑝. Next, calculate the 

Mahalanobis Distance:     

𝑀𝑀𝑀𝑀𝑖𝑖 = √(𝑡𝑡𝑖𝑖−𝑀𝑀𝑀𝑀𝑀𝑀(𝑋𝑋))′ (𝐶𝐶)−1(𝑡𝑡i − 𝑀𝑀𝑀𝑀𝑀𝑀(𝑋𝑋))  ,  𝑖𝑖 = 1,2, … , 𝑛𝑛,                                          (4)   

where  𝑀𝑀𝑀𝑀𝑀𝑀(𝑋𝑋) = median (𝑋𝑋).   

 Let define the cut-off point of 𝑀𝑀𝑀𝑀𝑖𝑖,, i.e., 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 :  

                       𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 = median(𝑀𝑀𝑀𝑀𝑖𝑖)                                                                               (5)                     

where  𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 ≠ 0.5.  Next, establish a new dataset, 𝑋̃𝑋0  which contain only 𝑚𝑚 observations such 

that it’s 𝑀𝑀𝑀𝑀𝑖𝑖 is less than or equal to the 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 

   𝑋̃𝑋0 = {𝑋𝑋𝑗𝑗𝑗𝑗: 𝑀𝑀𝑀𝑀𝑖𝑖 ≤ 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿},  𝑗𝑗 = 1,2, … , 𝑚𝑚;  𝑙𝑙 = 1,2, … , 𝑝𝑝.                                                     (6)                                   

Step 2 Compute the initial Mahalanobis Distance. 

 𝑀𝑀𝑀𝑀𝑖𝑖0,𝑀𝑀𝑀𝑀 = √(𝑡𝑡𝑖𝑖−𝑇𝑇0,𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆)′(𝐶𝐶0,𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆)−1(𝑡𝑡𝑖𝑖 − 𝑇𝑇0,𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆) 𝑖𝑖 = 1,2, … , 𝑛𝑛,                                           (7)                   

where 𝑇𝑇0,𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 is the 𝑝𝑝 − dimensional row vector of location and 𝐶𝐶0,𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 is the (𝑝𝑝 × 𝑝𝑝)   

    𝑋̃𝑋1,𝑀𝑀𝑀𝑀 = {𝑋𝑋𝑗𝑗𝑗𝑗:𝑀𝑀𝑀𝑀0𝑖𝑖,𝑀𝑀𝑀𝑀 ≤ 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿0},  𝑗𝑗 = 1,2, … ,𝑚𝑚;  𝑙𝑙 = 1,2,… , 𝑝𝑝.      
 
 

𝑇𝑇𝐹𝐹𝐹𝐹𝐹𝐹 = {𝑇𝑇𝐾𝐾,𝐷𝐷𝐷𝐷𝐷𝐷  𝑖𝑖𝑖𝑖
√|𝐶𝐶𝐾𝐾,𝐷𝐷𝐷𝐷𝐷𝐷|   < √|𝐶𝐶𝐾𝐾,𝑀𝑀𝑀𝑀|

𝑇𝑇𝐾𝐾,𝑀𝑀𝑀𝑀     𝑂𝑂𝑂𝑂ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒
}                                                                          (9) 

𝐶𝐶𝐹𝐹𝐹𝐹𝐹𝐹 =

{ 
 
  
𝑀𝑀𝑀𝑀𝑀𝑀(𝑀𝑀𝑀𝑀𝑖𝑖(𝑇𝑇𝐾𝐾,𝐷𝐷𝐷𝐷𝐷𝐷,𝐶𝐶𝐾𝐾,𝐷𝐷𝐷𝐷𝐷𝐷))

𝑥𝑥2(𝑝𝑝,0.5)
× 𝐶𝐶𝐾𝐾,𝐷𝐷𝐷𝐷𝐷𝐷, 𝑖𝑖𝑖𝑖 √|𝐶𝐶𝐾𝐾,𝐷𝐷𝐷𝐷𝐷𝐷|   < √|𝐶𝐶𝐾𝐾,𝑀𝑀𝑀𝑀|

𝑀𝑀𝑀𝑀𝑀𝑀(𝑀𝑀𝑀𝑀𝑖𝑖(𝑇𝑇𝐾𝐾,𝑀𝑀𝑀𝑀,𝐶𝐶𝐾𝐾,𝑀𝑀𝑀𝑀))
𝑥𝑥2(𝑝𝑝,0.5)

× 𝐶𝐶𝐾𝐾,𝑀𝑀𝑀𝑀    ,       𝑂𝑂𝑂𝑂ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒
} 
 
  

                                    (10) 

and 

               𝐶𝐶𝐹𝐹𝐹𝐹𝐹𝐹∗ = 𝑀𝑀𝑀𝑀𝑀𝑀(𝑀𝑀𝑀𝑀𝑖𝑖(𝑇𝑇𝐹𝐹𝐹𝐹𝐹𝐹,𝐶𝐶𝐹𝐹𝐹𝐹𝐹𝐹))
𝑥𝑥2(𝑝𝑝,0.5)

 × 𝐶𝐶𝐹𝐹𝐹𝐹𝐹𝐹. 

  

    𝑋̃𝑋1,𝑀𝑀𝑀𝑀 = {𝑋𝑋𝑗𝑗𝑗𝑗:𝑀𝑀𝑀𝑀0𝑖𝑖,𝑀𝑀𝑀𝑀 ≤ 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿0},  𝑗𝑗 = 1,2, … ,𝑚𝑚;  𝑙𝑙 = 1,2,… , 𝑝𝑝.      
 
 

𝑇𝑇𝐹𝐹𝐹𝐹𝐹𝐹 = {𝑇𝑇𝐾𝐾,𝐷𝐷𝐷𝐷𝐷𝐷  𝑖𝑖𝑖𝑖
√|𝐶𝐶𝐾𝐾,𝐷𝐷𝐷𝐷𝐷𝐷|   < √|𝐶𝐶𝐾𝐾,𝑀𝑀𝑀𝑀|

𝑇𝑇𝐾𝐾,𝑀𝑀𝑀𝑀     𝑂𝑂𝑂𝑂ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒
}                                                                          (9) 

𝐶𝐶𝐹𝐹𝐹𝐹𝐹𝐹 =

{ 
 
  
𝑀𝑀𝑀𝑀𝑀𝑀(𝑀𝑀𝑀𝑀𝑖𝑖(𝑇𝑇𝐾𝐾,𝐷𝐷𝐷𝐷𝐷𝐷,𝐶𝐶𝐾𝐾,𝐷𝐷𝐷𝐷𝐷𝐷))

𝑥𝑥2(𝑝𝑝,0.5)
× 𝐶𝐶𝐾𝐾,𝐷𝐷𝐷𝐷𝐷𝐷, 𝑖𝑖𝑖𝑖 √|𝐶𝐶𝐾𝐾,𝐷𝐷𝐷𝐷𝐷𝐷|   < √|𝐶𝐶𝐾𝐾,𝑀𝑀𝑀𝑀|

𝑀𝑀𝑀𝑀𝑀𝑀(𝑀𝑀𝑀𝑀𝑖𝑖(𝑇𝑇𝐾𝐾,𝑀𝑀𝑀𝑀,𝐶𝐶𝐾𝐾,𝑀𝑀𝑀𝑀))
𝑥𝑥2(𝑝𝑝,0.5)

× 𝐶𝐶𝐾𝐾,𝑀𝑀𝑀𝑀    ,       𝑂𝑂𝑂𝑂ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒
} 
 
  

                                    (10) 

and 

               𝐶𝐶𝐹𝐹𝐹𝐹𝐹𝐹∗ = 𝑀𝑀𝑀𝑀𝑀𝑀(𝑀𝑀𝑀𝑀𝑖𝑖(𝑇𝑇𝐹𝐹𝐹𝐹𝐹𝐹,𝐶𝐶𝐹𝐹𝐹𝐹𝐹𝐹))
𝑥𝑥2(𝑝𝑝,0.5)

 × 𝐶𝐶𝐹𝐹𝐹𝐹𝐹𝐹. 

  

    𝑋̃𝑋1,𝑀𝑀𝑀𝑀 = {𝑋𝑋𝑗𝑗𝑗𝑗:𝑀𝑀𝑀𝑀0𝑖𝑖,𝑀𝑀𝑀𝑀 ≤ 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿0},  𝑗𝑗 = 1,2, … ,𝑚𝑚;  𝑙𝑙 = 1,2,… , 𝑝𝑝.      
 
 

𝑇𝑇𝐹𝐹𝐹𝐹𝐹𝐹 = {𝑇𝑇𝐾𝐾,𝐷𝐷𝐷𝐷𝐷𝐷  𝑖𝑖𝑖𝑖
√|𝐶𝐶𝐾𝐾,𝐷𝐷𝐷𝐷𝐷𝐷|   < √|𝐶𝐶𝐾𝐾,𝑀𝑀𝑀𝑀|

𝑇𝑇𝐾𝐾,𝑀𝑀𝑀𝑀     𝑂𝑂𝑂𝑂ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒
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× 𝐶𝐶𝐾𝐾,𝐷𝐷𝐷𝐷𝐷𝐷, 𝑖𝑖𝑖𝑖 √|𝐶𝐶𝐾𝐾,𝐷𝐷𝐷𝐷𝐷𝐷|   < √|𝐶𝐶𝐾𝐾,𝑀𝑀𝑀𝑀|

𝑀𝑀𝑀𝑀𝑀𝑀(𝑀𝑀𝑀𝑀𝑖𝑖(𝑇𝑇𝐾𝐾,𝑀𝑀𝑀𝑀,𝐶𝐶𝐾𝐾,𝑀𝑀𝑀𝑀))
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𝑥𝑥2(𝑝𝑝,0.5)

 × 𝐶𝐶𝐹𝐹𝐹𝐹𝐹𝐹. 

  

Here, 𝑥𝑥(𝑝𝑝,0.5)
2  denotes the chi-square distribution with 𝑝𝑝 degrees of freedom and a significance  

 

  𝑋̃𝑋𝐹𝐹𝐹𝐹𝐹𝐹 = {𝑋𝑋𝑗𝑗𝑗𝑗: 𝑀𝑀𝑀𝑀𝑖𝑖(𝑇𝑇𝐹𝐹𝐹𝐹𝐹𝐹, 𝐶𝐶𝐹𝐹𝐹𝐹𝐹𝐹
∗ ) ≤ 𝑥𝑥2(𝑝𝑝,1−𝛼𝛼)},          𝑗𝑗 = 1,2, … , 𝑚𝑚; 𝑙𝑙 = 1,2, … , 𝑝𝑝    

 
    
 

               𝐶𝐶1,𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅
∗ = 𝑀𝑀𝑀𝑀𝑀𝑀(𝑀𝑀𝑀𝑀𝑖𝑖(𝑇𝑇1,𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅,𝐶𝐶1,𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅))

𝑥𝑥2(𝑝𝑝,0.5)
× 𝐶𝐶1,𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅.                           

 
 
𝑋̃𝑋2,𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = {𝑋𝑋𝑗𝑗𝑗𝑗: 𝑀𝑀𝑀𝑀𝑖𝑖(𝑇𝑇1,𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅, 𝐶𝐶1,𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅

∗ ) ≤ 𝑥𝑥2(𝑝𝑝,1−𝛼𝛼)},  𝑗𝑗 = 1,2, … , 𝑚𝑚; 𝑙𝑙 = 1,2, … , 𝑝𝑝.                                                                          

Here, 𝑥𝑥(𝑝𝑝,0.5)
2  denotes the chi-square distribution with 𝑝𝑝 degrees of freedom and a significance  

 

  𝑋̃𝑋𝐹𝐹𝐹𝐹𝐹𝐹 = {𝑋𝑋𝑗𝑗𝑗𝑗: 𝑀𝑀𝑀𝑀𝑖𝑖(𝑇𝑇𝐹𝐹𝐹𝐹𝐹𝐹, 𝐶𝐶𝐹𝐹𝐹𝐹𝐹𝐹
∗ ) ≤ 𝑥𝑥2(𝑝𝑝,1−𝛼𝛼)},          𝑗𝑗 = 1,2, … , 𝑚𝑚; 𝑙𝑙 = 1,2, … , 𝑝𝑝    
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∗ = 𝑀𝑀𝑀𝑀𝑀𝑀(𝑀𝑀𝑀𝑀𝑖𝑖(𝑇𝑇1,𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅,𝐶𝐶1,𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅))

𝑥𝑥2(𝑝𝑝,0.5)
× 𝐶𝐶1,𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅.                           

 
 
𝑋̃𝑋2,𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = {𝑋𝑋𝑗𝑗𝑗𝑗: 𝑀𝑀𝑀𝑀𝑖𝑖(𝑇𝑇1,𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅, 𝐶𝐶1,𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅

∗ ) ≤ 𝑥𝑥2(𝑝𝑝,1−𝛼𝛼)},  𝑗𝑗 = 1,2, … , 𝑚𝑚; 𝑙𝑙 = 1,2, … , 𝑝𝑝.                                                                          

Here, 𝑥𝑥(𝑝𝑝,0.5)
2  denotes the chi-square distribution with 𝑝𝑝 degrees of freedom and a significance  

 

  𝑋̃𝑋𝐹𝐹𝐹𝐹𝐹𝐹 = {𝑋𝑋𝑗𝑗𝑗𝑗: 𝑀𝑀𝑀𝑀𝑖𝑖(𝑇𝑇𝐹𝐹𝐹𝐹𝐹𝐹, 𝐶𝐶𝐹𝐹𝐹𝐹𝐹𝐹
∗ ) ≤ 𝑥𝑥2(𝑝𝑝,1−𝛼𝛼)},          𝑗𝑗 = 1,2, … , 𝑚𝑚; 𝑙𝑙 = 1,2, … , 𝑝𝑝    
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∗ ) ≤ 𝑥𝑥2(𝑝𝑝,1−𝛼𝛼)},  𝑗𝑗 = 1,2, … , 𝑚𝑚; 𝑙𝑙 = 1,2, … , 𝑝𝑝.                                                                          

Here, 𝑥𝑥(𝑝𝑝,0.5)
2  denotes the chi-square distribution with 𝑝𝑝 degrees of freedom and a significance  

 

  𝑋̃𝑋𝐹𝐹𝐹𝐹𝐹𝐹 = {𝑋𝑋𝑗𝑗𝑗𝑗: 𝑀𝑀𝑀𝑀𝑖𝑖(𝑇𝑇𝐹𝐹𝐹𝐹𝐹𝐹, 𝐶𝐶𝐹𝐹𝐹𝐹𝐹𝐹
∗ ) ≤ 𝑥𝑥2(𝑝𝑝,1−𝛼𝛼)},          𝑗𝑗 = 1,2, … , 𝑚𝑚; 𝑙𝑙 = 1,2, … , 𝑝𝑝    

 
    
 

               𝐶𝐶1,𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅
∗ = 𝑀𝑀𝑀𝑀𝑀𝑀(𝑀𝑀𝑀𝑀𝑖𝑖(𝑇𝑇1,𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅,𝐶𝐶1,𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅))

𝑥𝑥2(𝑝𝑝,0.5)
× 𝐶𝐶1,𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅.                           

 
 
𝑋̃𝑋2,𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = {𝑋𝑋𝑗𝑗𝑗𝑗: 𝑀𝑀𝑀𝑀𝑖𝑖(𝑇𝑇1,𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅, 𝐶𝐶1,𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅

∗ ) ≤ 𝑥𝑥2(𝑝𝑝,1−𝛼𝛼)},  𝑗𝑗 = 1,2, … , 𝑚𝑚; 𝑙𝑙 = 1,2, … , 𝑝𝑝.                                                                          
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as follows:

 (14)                                                                 

Step 3 Repeat Steps 1 to 2, K times until convergence. 
Stop the process if the number of detected outliers 
or HLPs based on  MDi (TK,RFCH,CK,RFCH) is equal to the 
number detected by MDi (TK-1,RFCH, 𝐶𝐶𝐾𝐾−1,𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅∗  -1,RFCH). Observations 
corresponding to MDi .,. larger than

𝐶𝐶2,𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅
∗ = 𝑀𝑀𝑀𝑀𝑀𝑀(𝑀𝑀𝑀𝑀𝑖𝑖(𝑇𝑇2,𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅,𝐶𝐶2,𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅))

𝑥𝑥2(𝑝𝑝,0.5)
×  𝐶𝐶2,𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅.                                                                               

 
than 𝑥𝑥(𝑝𝑝,0.05)

2   
 
 
Breakdown (HB) √𝑛𝑛    
 
 

𝑅𝑅𝑅𝑅𝑅𝑅𝑖𝑖 = √(𝑡𝑡𝑖𝑖 − 𝑇𝑇𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅)′(𝐶𝐶𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅)−1(𝑡𝑡𝑖𝑖 − 𝑇𝑇𝑅𝑅𝑅𝑅𝐶𝐶𝐶𝐶)  , 𝑖𝑖 = 1,2, … , 𝑛𝑛. 

𝑋𝑋 = [𝑋𝑋𝑅𝑅
𝑋𝑋𝐷𝐷

],    𝑌𝑌 = [𝑌𝑌𝑅𝑅
𝑌𝑌𝐷𝐷

] 

Step 4 For the clean ‘R’ group, estimate the parameters of the linear model, 𝛽̂𝛽𝑅𝑅 as follows 

𝛽̂𝛽𝑅𝑅 = (𝑋𝑋𝑅𝑅
𝑇𝑇𝑋𝑋𝑅𝑅)−1𝑋𝑋𝑅𝑅

𝑇𝑇𝑌𝑌𝑅𝑅 

Then compute the residual, 𝑟𝑟𝑖𝑖(𝑅𝑅) = 𝑌𝑌𝑖𝑖 − 𝑋𝑋𝑖𝑖𝛽̂𝛽𝑅𝑅. 

Step 5 The Robust and fast generalized Studentized residual (RFGSR), indicated by 𝑅𝑅𝑓𝑓𝑓𝑓𝑖𝑖
∗is 

then computed for the detection of multiple outliers  

 

are considered 
as HLPs. As proven by Olive and Hawkins (2010), upon 
convergence, (TK,RFCH,CK,RFCH) are High Breakdown (HB) 

( 𝑡𝑡 ̅) √𝑛𝑛  

 

 consistent estimators.

THE PROPOSED ROBUST AND FAST IMPROVISED 
INFLUENTIAL DISTANCE (RFIID)

Group deletion based-approach were employed in the 
algorithm of ID for the classification and detection of 
multiple HLPs, outliers, and IOs. At the outset, the GUM 
(union of the detected observation based on standardized 
studentized residual and/or standardized LMS residuals, 
leverage values or hat matrix, CDs, and DFFITS) was 
employed to separate the clean subset R with size (n-d) 
and suspected IOs of group D of size d. Subsequently, the 
remaining data points relative to the clean subset were 
tested for outlyingness. Afterwards, the Mahalanobis 
Distant (MD) based on the generalized studentized 
residual (GSR) and generalized leverage values (GLV) 
were utilized for calculating the ID. The weakness of ID 
has already been discussed in the preceding section where 
it suffers from long computation running times, masking 
and swamping effect due to employing unreliable methods 
of detection of unusual observations. As a solution to 
this problem, Habshah, Muhammad and Ismaeel (2021) 
proposed an alternative method of detection of IOs 
(FIID) by employing more effective algorithm to detect 
suspected IOs with less computer running time. In their 
algorithm of FIID, they employed robust mahalanobis 
distant (LMS-RMDISE) based on index set equality 
(ISE) which is proven to be more effective than the ID. 
Nonetheless, through our investigation, the FIID still 
suffers from swamping effect and computationally not 
stable due to using RMD-ISE as reported in Habshah, 
Talib, Jayanthi and Urabi (2020). Furthermore, the FIID 
used improper cut-off point, i.e., F distribution based on 
the assumption that the p-dimensional variables follow 
a multivariate normal distribution. However, in a real 
life problem, there is no guarantee that data would come 
from a multivariate normal distribution. 

We anticipate that the computation running time 
and the percentage of correct detection of the FIID can 
be improved.  As such, another improved version of FIID 
which is called Robust and Fast Improvised Influential 
Distance (RFIID) is put forward by incorporating the 
RMD based on Reweighted Fast Consistent and High 
breakdown (RFCH) estimators (Olive & Hawkins 2010). 
The suspected IOs are detected based on LMS-RMDRFCH. 
The RFCH is very fast and computationally very stable. 
The attractive feature of this estimator is that its location 
and scatter estimators are( 𝑡𝑡 ̅) √𝑛𝑛  

 

consistent estimators 
as proven by Olive and Hawkin (2010). Moreover, 
by classifying observations into six groups based on 
Mohammed, Habshah and Rahmatullah Imon (2015) 
algorithm with slide modifications, able to correctly 
separate the IOs (vertical outliers and bad HLPs) from 
the rest of the observations. Since the distribution of 
RFIID is intractable, following Habshah, Norazan and 
Rahmatullah Imon (2009), Rashid et al. (2022), and 
Zahariah and Habshah (2023), a confidence bound type 
cut-off point is employed.
The RFIID can be summarized as the following:

Step 1 The standardized least median of squares (LMS) is 
employed to detect suspected vertical outliers indicated 
as V set.  

Step 2 Identify the suspected HLPs by using Robust 
Mahalanobis Distance based on RFCH

where the (TRFCH) and (CRFCH), is the location and scatter 
estimators of RFCH, respectively.
The cut-off point for RMD is given as:

                                                                             ,

where
    

We declare that any ith case with RMDi > cut_off point, is 
the suspected HLPs and include them in a deletion group, 
denoted as L Set.

𝐶𝐶2,𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅
∗ = 𝑀𝑀𝑀𝑀𝑀𝑀(𝑀𝑀𝑀𝑀𝑖𝑖(𝑇𝑇2,𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅,𝐶𝐶2,𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅))

𝑥𝑥2(𝑝𝑝,0.5)
×  𝐶𝐶2,𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅.                                                                               

 
than 𝑥𝑥(𝑝𝑝,0.05)

2   
 
 
Breakdown (HB) √𝑛𝑛    
 
 

𝑅𝑅𝑅𝑅𝑅𝑅𝑖𝑖 = √(𝑡𝑡𝑖𝑖 − 𝑇𝑇𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅)′(𝐶𝐶𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅)−1(𝑡𝑡𝑖𝑖 − 𝑇𝑇𝑅𝑅𝑅𝑅𝐶𝐶𝐶𝐶)  , 𝑖𝑖 = 1,2, … , 𝑛𝑛. 

𝑋𝑋 = [𝑋𝑋𝑅𝑅
𝑋𝑋𝐷𝐷

],    𝑌𝑌 = [𝑌𝑌𝑅𝑅
𝑌𝑌𝐷𝐷

] 

Step 4 For the clean ‘R’ group, estimate the parameters of the linear model, 𝛽̂𝛽𝑅𝑅 as follows 

𝛽̂𝛽𝑅𝑅 = (𝑋𝑋𝑅𝑅
𝑇𝑇𝑋𝑋𝑅𝑅)−1𝑋𝑋𝑅𝑅

𝑇𝑇𝑌𝑌𝑅𝑅 

Then compute the residual, 𝑟𝑟𝑖𝑖(𝑅𝑅) = 𝑌𝑌𝑖𝑖 − 𝑋𝑋𝑖𝑖𝛽̂𝛽𝑅𝑅. 

Step 5 The Robust and fast generalized Studentized residual (RFGSR), indicated by 𝑅𝑅𝑓𝑓𝑓𝑓𝑖𝑖
∗is 

then computed for the detection of multiple outliers  

 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑖𝑖
∗ = √(𝜑𝜑𝑖𝑖 − 𝜑̅𝜑𝑅𝑅)𝑇𝑇Σ𝜑𝜑𝑅𝑅

−1(𝜑𝜑𝑖𝑖 − 𝜑̅𝜑𝑅𝑅),               𝑖𝑖 = 1,2, … , 𝑛𝑛 

where 𝜑̅𝜑𝑅𝑅 and Σ𝜑𝜑𝑅𝑅
−1 are the mean and inverse covariance  matrix of 𝜑𝜑, respectively.   

 
𝐶𝐶𝐶𝐶𝐶𝐶𝐹𝐹𝐹𝐹𝐹𝐹𝑖𝑖

∗ = median (𝑅𝑅𝐹𝐹𝐹𝐹𝐹𝐹𝑖𝑖
∗) + 3MAD(𝑅𝑅𝐹𝐹𝐹𝐹𝐹𝐹𝑖𝑖

∗)  

 

     𝑀𝑀𝑀𝑀𝑀𝑀(𝑅𝑅𝑅𝑅𝑅𝑅𝑖𝑖) =  𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 (𝑎𝑎𝑎𝑎𝑎𝑎 (𝑅𝑅𝑅𝑅𝑅𝑅𝑖𝑖 –  𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 (𝑅𝑅𝑅𝑅𝑅𝑅𝑖𝑖)))/0.6745. 

 

     𝑀𝑀𝑀𝑀𝑀𝑀(𝑅𝑅𝑅𝑅𝑅𝑅𝑖𝑖) =  𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 (𝑎𝑎𝑎𝑎𝑎𝑎 (𝑅𝑅𝑅𝑅𝑅𝑅𝑖𝑖 –  𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 (𝑅𝑅𝑅𝑅𝑅𝑅𝑖𝑖)))/0.6745. 

 

𝑅𝑅𝑅𝑅𝑅𝑅𝑖𝑖 = √(𝑡𝑡𝑖𝑖 − 𝑇𝑇𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅)′(𝐶𝐶𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅)−1(𝑡𝑡𝑖𝑖 − 𝑇𝑇𝑅𝑅𝑅𝑅𝐶𝐶𝐶𝐶)  , 𝑖𝑖 = 1,2, … , 𝑛𝑛. 

 𝑅𝑅𝑅𝑅𝑅𝑅𝑖𝑖 = √(𝑡𝑡𝑖𝑖 − 𝑇𝑇𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅)′(𝐶𝐶𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅)−1(𝑡𝑡𝑖𝑖 − 𝑇𝑇𝑅𝑅𝑅𝑅𝐶𝐶𝐶𝐶)  , 𝑖𝑖 = 1,2, … , 𝑛𝑛. 
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Step 3 The suspected unusual observations, denoted as 
‘D’ set is defined as the union of V and L sets, while the 
remaining or clean (n-d) observations is indicated as ‘R’ 
set. The breaking up of the X and Y matrices for both 
the clean ‘R’ group and the suspected IOs ‘D’ group are 
presented as the following:

Step 4 For the clean ‘R’ group, estimate the parameters 
of the linear model, 

𝐶𝐶2,𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅
∗ = 𝑀𝑀𝑀𝑀𝑀𝑀(𝑀𝑀𝑀𝑀𝑖𝑖(𝑇𝑇2,𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅,𝐶𝐶2,𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅))

𝑥𝑥2(𝑝𝑝,0.5)
×  𝐶𝐶2,𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅.                                                                               

 
than 𝑥𝑥(𝑝𝑝,0.05)

2   
 
 
Breakdown (HB) √𝑛𝑛    
 
 

𝑅𝑅𝑅𝑅𝑅𝑅𝑖𝑖 = √(𝑡𝑡𝑖𝑖 − 𝑇𝑇𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅)′(𝐶𝐶𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅)−1(𝑡𝑡𝑖𝑖 − 𝑇𝑇𝑅𝑅𝑅𝑅𝐶𝐶𝐶𝐶)  , 𝑖𝑖 = 1,2, … , 𝑛𝑛. 

𝑋𝑋 = [𝑋𝑋𝑅𝑅
𝑋𝑋𝐷𝐷

],    𝑌𝑌 = [𝑌𝑌𝑅𝑅
𝑌𝑌𝐷𝐷

] 

Step 4 For the clean ‘R’ group, estimate the parameters of the linear model, 𝛽̂𝛽𝑅𝑅 as follows 

𝛽̂𝛽𝑅𝑅 = (𝑋𝑋𝑅𝑅
𝑇𝑇𝑋𝑋𝑅𝑅)−1𝑋𝑋𝑅𝑅

𝑇𝑇𝑌𝑌𝑅𝑅 

Then compute the residual, 𝑟𝑟𝑖𝑖(𝑅𝑅) = 𝑌𝑌𝑖𝑖 − 𝑋𝑋𝑖𝑖𝛽̂𝛽𝑅𝑅. 

Step 5 The Robust and fast generalized Studentized residual (RFGSR), indicated by 𝑅𝑅𝑓𝑓𝑓𝑓𝑖𝑖
∗is 

then computed for the detection of multiple outliers  

 

 as follows

Then compute the residual, 

𝐶𝐶2,𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅
∗ = 𝑀𝑀𝑀𝑀𝑀𝑀(𝑀𝑀𝑀𝑀𝑖𝑖(𝑇𝑇2,𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅,𝐶𝐶2,𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅))

𝑥𝑥2(𝑝𝑝,0.5)
×  𝐶𝐶2,𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅.                                                                               

 
than 𝑥𝑥(𝑝𝑝,0.05)

2   
 
 
Breakdown (HB) √𝑛𝑛    
 
 

𝑅𝑅𝑅𝑅𝑅𝑅𝑖𝑖 = √(𝑡𝑡𝑖𝑖 − 𝑇𝑇𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅)′(𝐶𝐶𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅)−1(𝑡𝑡𝑖𝑖 − 𝑇𝑇𝑅𝑅𝑅𝑅𝐶𝐶𝐶𝐶)  , 𝑖𝑖 = 1,2, … , 𝑛𝑛. 

𝑋𝑋 = [𝑋𝑋𝑅𝑅
𝑋𝑋𝐷𝐷

],    𝑌𝑌 = [𝑌𝑌𝑅𝑅
𝑌𝑌𝐷𝐷

] 

Step 4 For the clean ‘R’ group, estimate the parameters of the linear model, 𝛽̂𝛽𝑅𝑅 as follows 

𝛽̂𝛽𝑅𝑅 = (𝑋𝑋𝑅𝑅
𝑇𝑇𝑋𝑋𝑅𝑅)−1𝑋𝑋𝑅𝑅

𝑇𝑇𝑌𝑌𝑅𝑅 

Then compute the residual, 𝑟𝑟𝑖𝑖(𝑅𝑅) = 𝑌𝑌𝑖𝑖 − 𝑋𝑋𝑖𝑖𝛽̂𝛽𝑅𝑅. 

Step 5 The Robust and fast generalized Studentized residual (RFGSR), indicated by 𝑅𝑅𝑓𝑓𝑓𝑓𝑖𝑖
∗is 

then computed for the detection of multiple outliers  

 

Step 5 The Robust and fast generalized Studentized 
residual (RFGSR), indicated by

𝐶𝐶2,𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅
∗ = 𝑀𝑀𝑀𝑀𝑀𝑀(𝑀𝑀𝑀𝑀𝑖𝑖(𝑇𝑇2,𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅,𝐶𝐶2,𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅))

𝑥𝑥2(𝑝𝑝,0.5)
×  𝐶𝐶2,𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅.                                                                               

 
than 𝑥𝑥(𝑝𝑝,0.05)

2   
 
 
Breakdown (HB) √𝑛𝑛    
 
 

𝑅𝑅𝑅𝑅𝑅𝑅𝑖𝑖 = √(𝑡𝑡𝑖𝑖 − 𝑇𝑇𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅)′(𝐶𝐶𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅)−1(𝑡𝑡𝑖𝑖 − 𝑇𝑇𝑅𝑅𝑅𝑅𝐶𝐶𝐶𝐶)  , 𝑖𝑖 = 1,2, … , 𝑛𝑛. 

𝑋𝑋 = [𝑋𝑋𝑅𝑅
𝑋𝑋𝐷𝐷

],    𝑌𝑌 = [𝑌𝑌𝑅𝑅
𝑌𝑌𝐷𝐷

] 

Step 4 For the clean ‘R’ group, estimate the parameters of the linear model, 𝛽̂𝛽𝑅𝑅 as follows 

𝛽̂𝛽𝑅𝑅 = (𝑋𝑋𝑅𝑅
𝑇𝑇𝑋𝑋𝑅𝑅)−1𝑋𝑋𝑅𝑅

𝑇𝑇𝑌𝑌𝑅𝑅 

Then compute the residual, 𝑟𝑟𝑖𝑖(𝑅𝑅) = 𝑌𝑌𝑖𝑖 − 𝑋𝑋𝑖𝑖𝛽̂𝛽𝑅𝑅. 

Step 5 The Robust and fast generalized Studentized residual (RFGSR), indicated by 𝑅𝑅𝑓𝑓𝑓𝑓𝑖𝑖
∗is 

then computed for the detection of multiple outliers  

 

 is then computed 
for the detection of multiple outliers 

where 

𝑅𝑅𝑅𝑅𝑅𝑅𝑖𝑖∗ =

{ 
 
  

𝑟𝑟𝑖𝑖(𝑅𝑅)
𝜎̂𝜎𝑅𝑅−𝑖𝑖√1 − h𝑖𝑖𝑖𝑖(𝑅𝑅)

      𝑓𝑓𝑓𝑓𝑓𝑓    𝑖𝑖 ∈ 𝑅𝑅,

𝑟𝑟𝑖𝑖(𝑅𝑅)
𝜎̂𝜎𝑅𝑅√1 + h𝑖𝑖𝑖𝑖(𝑅𝑅)

           𝑓𝑓𝑓𝑓𝑓𝑓    𝑖𝑖 ∈ 𝐷𝐷,
 

 
 
given by  h𝑖𝑖𝑖𝑖(𝑅𝑅) = 𝑥𝑥𝑖𝑖𝑇𝑇(𝑋𝑋𝑅𝑅𝑇𝑇𝑋𝑋𝑅𝑅)−1𝑥𝑥𝑖𝑖. 

Step 6 Since the distribution of  𝑅𝑅𝑅𝑅𝑟𝑟𝑖𝑖∗ is 
 

CP(𝑅𝑅𝑅𝑅𝑟𝑟𝑖𝑖∗) = median(𝑅𝑅𝑅𝑅𝑅𝑅𝑖𝑖∗) ± 3MAD(𝑅𝑅𝑅𝑅𝑟𝑟𝑖𝑖∗) 
 
 

𝑅𝑅𝑅𝑅h𝑖𝑖𝑖𝑖∗ =

{ 
 
  

h𝑖𝑖𝑖𝑖(𝑅𝑅)
1 − h𝑖𝑖𝑖𝑖(𝑅𝑅)

          𝑓𝑓𝑓𝑓𝑓𝑓    𝑖𝑖 ∈ 𝑅𝑅,

h𝑖𝑖𝑖𝑖(𝑅𝑅)
1 + h𝑖𝑖𝑖𝑖(𝑅𝑅)

           𝑓𝑓𝑓𝑓𝑓𝑓     𝑖𝑖 ∈ 𝐷𝐷,
 

 
CP(𝑅𝑅𝑅𝑅h𝑖𝑖𝑖𝑖∗ ) = median(𝑅𝑅𝑅𝑅h𝑖𝑖𝑖𝑖∗ ) + 3MAD(𝑅𝑅𝑓𝑓h𝑖𝑖𝑖𝑖∗ )  

An observation is considered HLPs if  𝑅𝑅𝑅𝑅h𝑖𝑖𝑖𝑖∗   value is greater than the CP(𝑅𝑅𝑅𝑅h𝑖𝑖𝑖𝑖∗ )  

 

 represent the residual standard error, and 
the diagonal element of the hat matrix is given by 

𝑅𝑅𝑅𝑅𝑅𝑅𝑖𝑖∗ =

{ 
 
  

𝑟𝑟𝑖𝑖(𝑅𝑅)
𝜎̂𝜎𝑅𝑅−𝑖𝑖√1 − h𝑖𝑖𝑖𝑖(𝑅𝑅)

      𝑓𝑓𝑓𝑓𝑓𝑓    𝑖𝑖 ∈ 𝑅𝑅,

𝑟𝑟𝑖𝑖(𝑅𝑅)
𝜎̂𝜎𝑅𝑅√1 + h𝑖𝑖𝑖𝑖(𝑅𝑅)

           𝑓𝑓𝑓𝑓𝑓𝑓    𝑖𝑖 ∈ 𝐷𝐷,
 

 
 
given by  h𝑖𝑖𝑖𝑖(𝑅𝑅) = 𝑥𝑥𝑖𝑖𝑇𝑇(𝑋𝑋𝑅𝑅𝑇𝑇𝑋𝑋𝑅𝑅)−1𝑥𝑥𝑖𝑖. 

Step 6 Since the distribution of  𝑅𝑅𝑅𝑅𝑟𝑟𝑖𝑖∗ is 
 

CP(𝑅𝑅𝑅𝑅𝑟𝑟𝑖𝑖∗) = median(𝑅𝑅𝑅𝑅𝑅𝑅𝑖𝑖∗) ± 3MAD(𝑅𝑅𝑅𝑅𝑟𝑟𝑖𝑖∗) 
 
 

𝑅𝑅𝑅𝑅h𝑖𝑖𝑖𝑖∗ =

{ 
 
  

h𝑖𝑖𝑖𝑖(𝑅𝑅)
1 − h𝑖𝑖𝑖𝑖(𝑅𝑅)

          𝑓𝑓𝑓𝑓𝑓𝑓    𝑖𝑖 ∈ 𝑅𝑅,

h𝑖𝑖𝑖𝑖(𝑅𝑅)
1 + h𝑖𝑖𝑖𝑖(𝑅𝑅)

           𝑓𝑓𝑓𝑓𝑓𝑓     𝑖𝑖 ∈ 𝐷𝐷,
 

 
CP(𝑅𝑅𝑅𝑅h𝑖𝑖𝑖𝑖∗ ) = median(𝑅𝑅𝑅𝑅h𝑖𝑖𝑖𝑖∗ ) + 3MAD(𝑅𝑅𝑓𝑓h𝑖𝑖𝑖𝑖∗ )  

An observation is considered HLPs if  𝑅𝑅𝑅𝑅h𝑖𝑖𝑖𝑖∗   value is greater than the CP(𝑅𝑅𝑅𝑅h𝑖𝑖𝑖𝑖∗ )  

 

.

Step 6 Since the distribution of 

𝐶𝐶2,𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅
∗ = 𝑀𝑀𝑀𝑀𝑀𝑀(𝑀𝑀𝑀𝑀𝑖𝑖(𝑇𝑇2,𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅,𝐶𝐶2,𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅))

𝑥𝑥2(𝑝𝑝,0.5)
×  𝐶𝐶2,𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅.                                                                               

 
than 𝑥𝑥(𝑝𝑝,0.05)

2   
 
 
Breakdown (HB) √𝑛𝑛    
 
 

𝑅𝑅𝑅𝑅𝑅𝑅𝑖𝑖 = √(𝑡𝑡𝑖𝑖 − 𝑇𝑇𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅)′(𝐶𝐶𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅)−1(𝑡𝑡𝑖𝑖 − 𝑇𝑇𝑅𝑅𝑅𝑅𝐶𝐶𝐶𝐶)  , 𝑖𝑖 = 1,2, … , 𝑛𝑛. 

𝑋𝑋 = [𝑋𝑋𝑅𝑅
𝑋𝑋𝐷𝐷

],    𝑌𝑌 = [𝑌𝑌𝑅𝑅
𝑌𝑌𝐷𝐷

] 

Step 4 For the clean ‘R’ group, estimate the parameters of the linear model, 𝛽̂𝛽𝑅𝑅 as follows 

𝛽̂𝛽𝑅𝑅 = (𝑋𝑋𝑅𝑅
𝑇𝑇𝑋𝑋𝑅𝑅)−1𝑋𝑋𝑅𝑅

𝑇𝑇𝑌𝑌𝑅𝑅 

Then compute the residual, 𝑟𝑟𝑖𝑖(𝑅𝑅) = 𝑌𝑌𝑖𝑖 − 𝑋𝑋𝑖𝑖𝛽̂𝛽𝑅𝑅. 

Step 5 The Robust and fast generalized Studentized residual (RFGSR), indicated by 𝑅𝑅𝑓𝑓𝑓𝑓𝑖𝑖
∗is 

then computed for the detection of multiple outliers  

 

 is intractable, 
following Habshah, Norazan and Rahmatullah Imon 
(2009) and Rashid et al. (2022), the confidence bound 
type cutoff point for 

𝐶𝐶2,𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅
∗ = 𝑀𝑀𝑀𝑀𝑀𝑀(𝑀𝑀𝑀𝑀𝑖𝑖(𝑇𝑇2,𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅,𝐶𝐶2,𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅))

𝑥𝑥2(𝑝𝑝,0.5)
×  𝐶𝐶2,𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅.                                                                               

 
than 𝑥𝑥(𝑝𝑝,0.05)

2   
 
 
Breakdown (HB) √𝑛𝑛    
 
 

𝑅𝑅𝑅𝑅𝑅𝑅𝑖𝑖 = √(𝑡𝑡𝑖𝑖 − 𝑇𝑇𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅)′(𝐶𝐶𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅)−1(𝑡𝑡𝑖𝑖 − 𝑇𝑇𝑅𝑅𝑅𝑅𝐶𝐶𝐶𝐶)  , 𝑖𝑖 = 1,2, … , 𝑛𝑛. 

𝑋𝑋 = [𝑋𝑋𝑅𝑅
𝑋𝑋𝐷𝐷

],    𝑌𝑌 = [𝑌𝑌𝑅𝑅
𝑌𝑌𝐷𝐷

] 

Step 4 For the clean ‘R’ group, estimate the parameters of the linear model, 𝛽̂𝛽𝑅𝑅 as follows 

𝛽̂𝛽𝑅𝑅 = (𝑋𝑋𝑅𝑅
𝑇𝑇𝑋𝑋𝑅𝑅)−1𝑋𝑋𝑅𝑅

𝑇𝑇𝑌𝑌𝑅𝑅 

Then compute the residual, 𝑟𝑟𝑖𝑖(𝑅𝑅) = 𝑌𝑌𝑖𝑖 − 𝑋𝑋𝑖𝑖𝛽̂𝛽𝑅𝑅. 

Step 5 The Robust and fast generalized Studentized residual (RFGSR), indicated by 𝑅𝑅𝑓𝑓𝑓𝑓𝑖𝑖
∗is 

then computed for the detection of multiple outliers  

 

 is utilized,

where  

An observation is then declared as an outlier if 

𝐶𝐶2,𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅
∗ = 𝑀𝑀𝑀𝑀𝑀𝑀(𝑀𝑀𝑀𝑀𝑖𝑖(𝑇𝑇2,𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅,𝐶𝐶2,𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅))

𝑥𝑥2(𝑝𝑝,0.5)
×  𝐶𝐶2,𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅.                                                                               

 
than 𝑥𝑥(𝑝𝑝,0.05)

2   
 
 
Breakdown (HB) √𝑛𝑛    
 
 

𝑅𝑅𝑅𝑅𝑅𝑅𝑖𝑖 = √(𝑡𝑡𝑖𝑖 − 𝑇𝑇𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅)′(𝐶𝐶𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅)−1(𝑡𝑡𝑖𝑖 − 𝑇𝑇𝑅𝑅𝑅𝑅𝐶𝐶𝐶𝐶)  , 𝑖𝑖 = 1,2, … , 𝑛𝑛. 

𝑋𝑋 = [𝑋𝑋𝑅𝑅
𝑋𝑋𝐷𝐷

],    𝑌𝑌 = [𝑌𝑌𝑅𝑅
𝑌𝑌𝐷𝐷

] 

Step 4 For the clean ‘R’ group, estimate the parameters of the linear model, 𝛽̂𝛽𝑅𝑅 as follows 

𝛽̂𝛽𝑅𝑅 = (𝑋𝑋𝑅𝑅
𝑇𝑇𝑋𝑋𝑅𝑅)−1𝑋𝑋𝑅𝑅

𝑇𝑇𝑌𝑌𝑅𝑅 

Then compute the residual, 𝑟𝑟𝑖𝑖(𝑅𝑅) = 𝑌𝑌𝑖𝑖 − 𝑋𝑋𝑖𝑖𝛽̂𝛽𝑅𝑅. 

Step 5 The Robust and fast generalized Studentized residual (RFGSR), indicated by 𝑅𝑅𝑓𝑓𝑓𝑓𝑖𝑖
∗is 

then computed for the detection of multiple outliers  

 

   
value is greater than the CP(

𝐶𝐶2,𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅
∗ = 𝑀𝑀𝑀𝑀𝑀𝑀(𝑀𝑀𝑀𝑀𝑖𝑖(𝑇𝑇2,𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅,𝐶𝐶2,𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅))

𝑥𝑥2(𝑝𝑝,0.5)
×  𝐶𝐶2,𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅.                                                                               

 
than 𝑥𝑥(𝑝𝑝,0.05)

2   
 
 
Breakdown (HB) √𝑛𝑛    
 
 

𝑅𝑅𝑅𝑅𝑅𝑅𝑖𝑖 = √(𝑡𝑡𝑖𝑖 − 𝑇𝑇𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅)′(𝐶𝐶𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅)−1(𝑡𝑡𝑖𝑖 − 𝑇𝑇𝑅𝑅𝑅𝑅𝐶𝐶𝐶𝐶)  , 𝑖𝑖 = 1,2, … , 𝑛𝑛. 

𝑋𝑋 = [𝑋𝑋𝑅𝑅
𝑋𝑋𝐷𝐷

],    𝑌𝑌 = [𝑌𝑌𝑅𝑅
𝑌𝑌𝐷𝐷

] 

Step 4 For the clean ‘R’ group, estimate the parameters of the linear model, 𝛽̂𝛽𝑅𝑅 as follows 

𝛽̂𝛽𝑅𝑅 = (𝑋𝑋𝑅𝑅
𝑇𝑇𝑋𝑋𝑅𝑅)−1𝑋𝑋𝑅𝑅

𝑇𝑇𝑌𝑌𝑅𝑅 

Then compute the residual, 𝑟𝑟𝑖𝑖(𝑅𝑅) = 𝑌𝑌𝑖𝑖 − 𝑋𝑋𝑖𝑖𝛽̂𝛽𝑅𝑅. 

Step 5 The Robust and fast generalized Studentized residual (RFGSR), indicated by 𝑅𝑅𝑓𝑓𝑓𝑓𝑖𝑖
∗is 

then computed for the detection of multiple outliers  

 

 )  
Step 7 For the identification of multiple HLPs, the robust 
fast-generalized leverage values (RFGLV), indicated by  

𝑅𝑅𝑅𝑅𝑅𝑅𝑖𝑖∗ =

{ 
 
  

𝑟𝑟𝑖𝑖(𝑅𝑅)
𝜎̂𝜎𝑅𝑅−𝑖𝑖√1 − h𝑖𝑖𝑖𝑖(𝑅𝑅)

      𝑓𝑓𝑓𝑓𝑓𝑓    𝑖𝑖 ∈ 𝑅𝑅,

𝑟𝑟𝑖𝑖(𝑅𝑅)
𝜎̂𝜎𝑅𝑅√1 + h𝑖𝑖𝑖𝑖(𝑅𝑅)

           𝑓𝑓𝑓𝑓𝑓𝑓    𝑖𝑖 ∈ 𝐷𝐷,
 

 
 
given by  h𝑖𝑖𝑖𝑖(𝑅𝑅) = 𝑥𝑥𝑖𝑖𝑇𝑇(𝑋𝑋𝑅𝑅𝑇𝑇𝑋𝑋𝑅𝑅)−1𝑥𝑥𝑖𝑖. 

Step 6 Since the distribution of  𝑅𝑅𝑅𝑅𝑟𝑟𝑖𝑖∗ is 
 

CP(𝑅𝑅𝑅𝑅𝑟𝑟𝑖𝑖∗) = median(𝑅𝑅𝑅𝑅𝑅𝑅𝑖𝑖∗) ± 3MAD(𝑅𝑅𝑅𝑅𝑟𝑟𝑖𝑖∗) 
 
 

𝑅𝑅𝑅𝑅h𝑖𝑖𝑖𝑖∗ =

{ 
 
  

h𝑖𝑖𝑖𝑖(𝑅𝑅)
1 − h𝑖𝑖𝑖𝑖(𝑅𝑅)

          𝑓𝑓𝑓𝑓𝑓𝑓    𝑖𝑖 ∈ 𝑅𝑅,

h𝑖𝑖𝑖𝑖(𝑅𝑅)
1 + h𝑖𝑖𝑖𝑖(𝑅𝑅)

           𝑓𝑓𝑓𝑓𝑓𝑓     𝑖𝑖 ∈ 𝐷𝐷,
 

 
CP(𝑅𝑅𝑅𝑅h𝑖𝑖𝑖𝑖∗ ) = median(𝑅𝑅𝑅𝑅h𝑖𝑖𝑖𝑖∗ ) + 3MAD(𝑅𝑅𝑓𝑓h𝑖𝑖𝑖𝑖∗ )  

An observation is considered HLPs if  𝑅𝑅𝑅𝑅h𝑖𝑖𝑖𝑖∗   value is greater than the CP(𝑅𝑅𝑅𝑅h𝑖𝑖𝑖𝑖∗ )  

 

 is calculated as follows;

Step 8 Similar to Step 6, the following cut-off point for   

𝑅𝑅𝑅𝑅𝑅𝑅𝑖𝑖∗ =

{ 
 
  

𝑟𝑟𝑖𝑖(𝑅𝑅)
𝜎̂𝜎𝑅𝑅−𝑖𝑖√1 − h𝑖𝑖𝑖𝑖(𝑅𝑅)

      𝑓𝑓𝑓𝑓𝑓𝑓    𝑖𝑖 ∈ 𝑅𝑅,

𝑟𝑟𝑖𝑖(𝑅𝑅)
𝜎̂𝜎𝑅𝑅√1 + h𝑖𝑖𝑖𝑖(𝑅𝑅)

           𝑓𝑓𝑓𝑓𝑓𝑓    𝑖𝑖 ∈ 𝐷𝐷,
 

 
 
given by  h𝑖𝑖𝑖𝑖(𝑅𝑅) = 𝑥𝑥𝑖𝑖𝑇𝑇(𝑋𝑋𝑅𝑅𝑇𝑇𝑋𝑋𝑅𝑅)−1𝑥𝑥𝑖𝑖. 

Step 6 Since the distribution of  𝑅𝑅𝑅𝑅𝑟𝑟𝑖𝑖∗ is 
 

CP(𝑅𝑅𝑅𝑅𝑟𝑟𝑖𝑖∗) = median(𝑅𝑅𝑅𝑅𝑅𝑅𝑖𝑖∗) ± 3MAD(𝑅𝑅𝑅𝑅𝑟𝑟𝑖𝑖∗) 
 
 

𝑅𝑅𝑅𝑅h𝑖𝑖𝑖𝑖∗ =

{ 
 
  

h𝑖𝑖𝑖𝑖(𝑅𝑅)
1 − h𝑖𝑖𝑖𝑖(𝑅𝑅)

          𝑓𝑓𝑓𝑓𝑓𝑓    𝑖𝑖 ∈ 𝑅𝑅,

h𝑖𝑖𝑖𝑖(𝑅𝑅)
1 + h𝑖𝑖𝑖𝑖(𝑅𝑅)

           𝑓𝑓𝑓𝑓𝑓𝑓     𝑖𝑖 ∈ 𝐷𝐷,
 

 
CP(𝑅𝑅𝑅𝑅h𝑖𝑖𝑖𝑖∗ ) = median(𝑅𝑅𝑅𝑅h𝑖𝑖𝑖𝑖∗ ) + 3MAD(𝑅𝑅𝑓𝑓h𝑖𝑖𝑖𝑖∗ )  

An observation is considered HLPs if  𝑅𝑅𝑅𝑅h𝑖𝑖𝑖𝑖∗   value is greater than the CP(𝑅𝑅𝑅𝑅h𝑖𝑖𝑖𝑖∗ )  

 

is used;

An observation is considered HLPs if 

𝑅𝑅𝑅𝑅𝑅𝑅𝑖𝑖∗ =

{ 
 
  

𝑟𝑟𝑖𝑖(𝑅𝑅)
𝜎̂𝜎𝑅𝑅−𝑖𝑖√1 − h𝑖𝑖𝑖𝑖(𝑅𝑅)

      𝑓𝑓𝑓𝑓𝑓𝑓    𝑖𝑖 ∈ 𝑅𝑅,

𝑟𝑟𝑖𝑖(𝑅𝑅)
𝜎̂𝜎𝑅𝑅√1 + h𝑖𝑖𝑖𝑖(𝑅𝑅)

           𝑓𝑓𝑓𝑓𝑓𝑓    𝑖𝑖 ∈ 𝐷𝐷,
 

 
 
given by  h𝑖𝑖𝑖𝑖(𝑅𝑅) = 𝑥𝑥𝑖𝑖𝑇𝑇(𝑋𝑋𝑅𝑅𝑇𝑇𝑋𝑋𝑅𝑅)−1𝑥𝑥𝑖𝑖. 

Step 6 Since the distribution of  𝑅𝑅𝑅𝑅𝑟𝑟𝑖𝑖∗ is 
 

CP(𝑅𝑅𝑅𝑅𝑟𝑟𝑖𝑖∗) = median(𝑅𝑅𝑅𝑅𝑅𝑅𝑖𝑖∗) ± 3MAD(𝑅𝑅𝑅𝑅𝑟𝑟𝑖𝑖∗) 
 
 

𝑅𝑅𝑅𝑅h𝑖𝑖𝑖𝑖∗ =

{ 
 
  

h𝑖𝑖𝑖𝑖(𝑅𝑅)
1 − h𝑖𝑖𝑖𝑖(𝑅𝑅)

          𝑓𝑓𝑓𝑓𝑓𝑓    𝑖𝑖 ∈ 𝑅𝑅,

h𝑖𝑖𝑖𝑖(𝑅𝑅)
1 + h𝑖𝑖𝑖𝑖(𝑅𝑅)

           𝑓𝑓𝑓𝑓𝑓𝑓     𝑖𝑖 ∈ 𝐷𝐷,
 

 
CP(𝑅𝑅𝑅𝑅h𝑖𝑖𝑖𝑖∗ ) = median(𝑅𝑅𝑅𝑅h𝑖𝑖𝑖𝑖∗ ) + 3MAD(𝑅𝑅𝑓𝑓h𝑖𝑖𝑖𝑖∗ )  

An observation is considered HLPs if  𝑅𝑅𝑅𝑅h𝑖𝑖𝑖𝑖∗   value is greater than the CP(𝑅𝑅𝑅𝑅h𝑖𝑖𝑖𝑖∗ )  

 

value is 
greater than the CP(

𝑅𝑅𝑅𝑅𝑅𝑅𝑖𝑖∗ =

{ 
 
  

𝑟𝑟𝑖𝑖(𝑅𝑅)
𝜎̂𝜎𝑅𝑅−𝑖𝑖√1 − h𝑖𝑖𝑖𝑖(𝑅𝑅)

      𝑓𝑓𝑓𝑓𝑓𝑓    𝑖𝑖 ∈ 𝑅𝑅,

𝑟𝑟𝑖𝑖(𝑅𝑅)
𝜎̂𝜎𝑅𝑅√1 + h𝑖𝑖𝑖𝑖(𝑅𝑅)

           𝑓𝑓𝑓𝑓𝑓𝑓    𝑖𝑖 ∈ 𝐷𝐷,
 

 
 
given by  h𝑖𝑖𝑖𝑖(𝑅𝑅) = 𝑥𝑥𝑖𝑖𝑇𝑇(𝑋𝑋𝑅𝑅𝑇𝑇𝑋𝑋𝑅𝑅)−1𝑥𝑥𝑖𝑖. 

Step 6 Since the distribution of  𝑅𝑅𝑅𝑅𝑟𝑟𝑖𝑖∗ is 
 

CP(𝑅𝑅𝑅𝑅𝑟𝑟𝑖𝑖∗) = median(𝑅𝑅𝑅𝑅𝑅𝑅𝑖𝑖∗) ± 3MAD(𝑅𝑅𝑅𝑅𝑟𝑟𝑖𝑖∗) 
 
 

𝑅𝑅𝑅𝑅h𝑖𝑖𝑖𝑖∗ =

{ 
 
  

h𝑖𝑖𝑖𝑖(𝑅𝑅)
1 − h𝑖𝑖𝑖𝑖(𝑅𝑅)

          𝑓𝑓𝑓𝑓𝑓𝑓    𝑖𝑖 ∈ 𝑅𝑅,

h𝑖𝑖𝑖𝑖(𝑅𝑅)
1 + h𝑖𝑖𝑖𝑖(𝑅𝑅)

           𝑓𝑓𝑓𝑓𝑓𝑓     𝑖𝑖 ∈ 𝐷𝐷,
 

 
CP(𝑅𝑅𝑅𝑅h𝑖𝑖𝑖𝑖∗ ) = median(𝑅𝑅𝑅𝑅h𝑖𝑖𝑖𝑖∗ ) + 3MAD(𝑅𝑅𝑓𝑓h𝑖𝑖𝑖𝑖∗ )  

An observation is considered HLPs if  𝑅𝑅𝑅𝑅h𝑖𝑖𝑖𝑖∗   value is greater than the CP(𝑅𝑅𝑅𝑅h𝑖𝑖𝑖𝑖∗ )  

 

) 

Step 9 Compute Mahalanobis distance for a two-column 
matrix and denote this matrix as φ,  where RFGSR (Step 
5) is in the first column and RFGLV (Step 7) is in the 
second column.  This Mahalanobis distance is named 
the Robust and Fast-Influential Distance (𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑖𝑖

∗ = √(𝜑𝜑𝑖𝑖 − 𝜑̅𝜑𝑅𝑅)𝑇𝑇Σ𝜑𝜑𝑅𝑅
−1(𝜑𝜑𝑖𝑖 − 𝜑̅𝜑𝑅𝑅),               𝑖𝑖 = 1,2, … , 𝑛𝑛 

where 𝜑̅𝜑𝑅𝑅 and Σ𝜑𝜑𝑅𝑅
−1 are the mean and inverse covariance  matrix of 𝜑𝜑, respectively.   

 
𝐶𝐶𝐶𝐶𝐶𝐶𝐹𝐹𝐹𝐹𝐹𝐹𝑖𝑖

∗ = median (𝑅𝑅𝐹𝐹𝐹𝐹𝐹𝐹𝑖𝑖
∗) + 3MAD(𝑅𝑅𝐹𝐹𝐹𝐹𝐹𝐹𝑖𝑖

∗)  

 

) and 
is given by:

where

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑖𝑖
∗ = √(𝜑𝜑𝑖𝑖 − 𝜑̅𝜑𝑅𝑅)𝑇𝑇Σ𝜑𝜑𝑅𝑅

−1(𝜑𝜑𝑖𝑖 − 𝜑̅𝜑𝑅𝑅),               𝑖𝑖 = 1,2, … , 𝑛𝑛 

where 𝜑̅𝜑𝑅𝑅 and Σ𝜑𝜑𝑅𝑅
−1 are the mean and inverse covariance  matrix of 𝜑𝜑, respectively.   

 
𝐶𝐶𝐶𝐶𝐶𝐶𝐹𝐹𝐹𝐹𝐹𝐹𝑖𝑖

∗ = median (𝑅𝑅𝐹𝐹𝐹𝐹𝐹𝐹𝑖𝑖
∗) + 3MAD(𝑅𝑅𝐹𝐹𝐹𝐹𝐹𝐹𝑖𝑖

∗)  

 

 are the mean and inverse covariance 
matrix of φ, respectively.  
Since it is not easy to proof the distribution of 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑖𝑖

∗ = √(𝜑𝜑𝑖𝑖 − 𝜑̅𝜑𝑅𝑅)𝑇𝑇Σ𝜑𝜑𝑅𝑅
−1(𝜑𝜑𝑖𝑖 − 𝜑̅𝜑𝑅𝑅),               𝑖𝑖 = 1,2, … , 𝑛𝑛 

where 𝜑̅𝜑𝑅𝑅 and Σ𝜑𝜑𝑅𝑅
−1 are the mean and inverse covariance  matrix of 𝜑𝜑, respectively.   

 
𝐶𝐶𝐶𝐶𝐶𝐶𝐹𝐹𝐹𝐹𝐹𝐹𝑖𝑖

∗ = median (𝑅𝑅𝐹𝐹𝐹𝐹𝐹𝐹𝑖𝑖
∗) + 3MAD(𝑅𝑅𝐹𝐹𝐹𝐹𝐹𝐹𝑖𝑖

∗)  

 

, 
confidence bound type cutoff point is again utilized as 
in Habshah, Norazan and Rahmatullah Imon (2009) and 
Rashid et al. (2022), 

It is not sufficient to declare that any observation that 
correspond to 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑖𝑖

∗ = √(𝜑𝜑𝑖𝑖 − 𝜑̅𝜑𝑅𝑅)𝑇𝑇Σ𝜑𝜑𝑅𝑅
−1(𝜑𝜑𝑖𝑖 − 𝜑̅𝜑𝑅𝑅),               𝑖𝑖 = 1,2, … , 𝑛𝑛 

where 𝜑̅𝜑𝑅𝑅 and Σ𝜑𝜑𝑅𝑅
−1 are the mean and inverse covariance  matrix of 𝜑𝜑, respectively.   

 
𝐶𝐶𝐶𝐶𝐶𝐶𝐹𝐹𝐹𝐹𝐹𝐹𝑖𝑖

∗ = median (𝑅𝑅𝐹𝐹𝐹𝐹𝐹𝐹𝑖𝑖
∗) + 3MAD(𝑅𝑅𝐹𝐹𝐹𝐹𝐹𝐹𝑖𝑖

∗)  

 

 that exceeds its cutoff points, 
CP𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑖𝑖

∗ = √(𝜑𝜑𝑖𝑖 − 𝜑̅𝜑𝑅𝑅)𝑇𝑇Σ𝜑𝜑𝑅𝑅
−1(𝜑𝜑𝑖𝑖 − 𝜑̅𝜑𝑅𝑅),               𝑖𝑖 = 1,2, … , 𝑛𝑛 

where 𝜑̅𝜑𝑅𝑅 and Σ𝜑𝜑𝑅𝑅
−1 are the mean and inverse covariance  matrix of 𝜑𝜑, respectively.   

 
𝐶𝐶𝐶𝐶𝐶𝐶𝐹𝐹𝐹𝐹𝐹𝐹𝑖𝑖

∗ = median (𝑅𝑅𝐹𝐹𝐹𝐹𝐹𝐹𝑖𝑖
∗) + 3MAD(𝑅𝑅𝐹𝐹𝐹𝐹𝐹𝐹𝑖𝑖

∗)  

 

 is the suspected IOs as pointed out by 
Nurunnabi, Nasser and Imon (2016) in their decision for 
suspected IOs. Nurunnabi, Nasser and Imon (2016) then 
confirmed the suspected IOs by sketching a confidence 
bound on the ID’s plot of GSR versus GLV and declared an 
observation is IO if it falls beyond its confidence bound. 
This approach is less efficient as it tends to declare more 
good observations as IOs and taking longer computational 
running time. This shortcoming has prompted us to 
establish an additional step in declaring an observation as 
IO. Similar to the approach of Mohammed, Habshah and 
Rahmatullah Imon (2015) and Rashid et al. (2021), the 
following rule is taken up to confirm the suspected IOs;

i.  An observation is identified as RO if; |RFIID| ≤ CPRFGSR 
and |RFGLV| ≤ CPRFGLV 

ii.  An observation is identified as GLO if; |RFIID| ≤ CPRFGSR 
and |RFGLV| > CPRFGLV 

iii.  An observation is identified as IO if;  |RFIID| > CPRFGSR  
and |RFGLV| ≤ CPRFGLV  

iv.  An observation is identified as IO if;  ; |RFIID| > CPRFGSR   
and |RFGLV| > CPRFGLV 

The detected IOs can be clearly presented in Figure 1. 

𝐶𝐶2,𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅
∗ = 𝑀𝑀𝑀𝑀𝑀𝑀(𝑀𝑀𝑀𝑀𝑖𝑖(𝑇𝑇2,𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅,𝐶𝐶2,𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅))

𝑥𝑥2(𝑝𝑝,0.5)
×  𝐶𝐶2,𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅.                                                                               

 
than 𝑥𝑥(𝑝𝑝,0.05)

2   
 
 
Breakdown (HB) √𝑛𝑛    
 
 

𝑅𝑅𝑅𝑅𝑅𝑅𝑖𝑖 = √(𝑡𝑡𝑖𝑖 − 𝑇𝑇𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅)′(𝐶𝐶𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅)−1(𝑡𝑡𝑖𝑖 − 𝑇𝑇𝑅𝑅𝑅𝑅𝐶𝐶𝐶𝐶)  , 𝑖𝑖 = 1,2, … , 𝑛𝑛. 

𝑋𝑋 = [𝑋𝑋𝑅𝑅
𝑋𝑋𝐷𝐷

],    𝑌𝑌 = [𝑌𝑌𝑅𝑅
𝑌𝑌𝐷𝐷

] 

Step 4 For the clean ‘R’ group, estimate the parameters of the linear model, 𝛽̂𝛽𝑅𝑅 as follows 

𝛽̂𝛽𝑅𝑅 = (𝑋𝑋𝑅𝑅
𝑇𝑇𝑋𝑋𝑅𝑅)−1𝑋𝑋𝑅𝑅

𝑇𝑇𝑌𝑌𝑅𝑅 

Then compute the residual, 𝑟𝑟𝑖𝑖(𝑅𝑅) = 𝑌𝑌𝑖𝑖 − 𝑋𝑋𝑖𝑖𝛽̂𝛽𝑅𝑅. 

Step 5 The Robust and fast generalized Studentized residual (RFGSR), indicated by 𝑅𝑅𝑓𝑓𝑓𝑓𝑖𝑖
∗is 

then computed for the detection of multiple outliers  

 

𝐶𝐶2,𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅
∗ = 𝑀𝑀𝑀𝑀𝑀𝑀(𝑀𝑀𝑀𝑀𝑖𝑖(𝑇𝑇2,𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅,𝐶𝐶2,𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅))

𝑥𝑥2(𝑝𝑝,0.5)
×  𝐶𝐶2,𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅.                                                                               

 
than 𝑥𝑥(𝑝𝑝,0.05)

2   
 
 
Breakdown (HB) √𝑛𝑛    
 
 

𝑅𝑅𝑅𝑅𝑅𝑅𝑖𝑖 = √(𝑡𝑡𝑖𝑖 − 𝑇𝑇𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅)′(𝐶𝐶𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅)−1(𝑡𝑡𝑖𝑖 − 𝑇𝑇𝑅𝑅𝑅𝑅𝐶𝐶𝐶𝐶)  , 𝑖𝑖 = 1,2, … , 𝑛𝑛. 

𝑋𝑋 = [𝑋𝑋𝑅𝑅
𝑋𝑋𝐷𝐷

],    𝑌𝑌 = [𝑌𝑌𝑅𝑅
𝑌𝑌𝐷𝐷

] 

Step 4 For the clean ‘R’ group, estimate the parameters of the linear model, 𝛽̂𝛽𝑅𝑅 as follows 

𝛽̂𝛽𝑅𝑅 = (𝑋𝑋𝑅𝑅
𝑇𝑇𝑋𝑋𝑅𝑅)−1𝑋𝑋𝑅𝑅

𝑇𝑇𝑌𝑌𝑅𝑅 

Then compute the residual, 𝑟𝑟𝑖𝑖(𝑅𝑅) = 𝑌𝑌𝑖𝑖 − 𝑋𝑋𝑖𝑖𝛽̂𝛽𝑅𝑅. 

Step 5 The Robust and fast generalized Studentized residual (RFGSR), indicated by 𝑅𝑅𝑓𝑓𝑓𝑓𝑖𝑖
∗is 

then computed for the detection of multiple outliers  

 

𝑅𝑅𝑅𝑅𝑅𝑅𝑖𝑖∗ =

{ 
 
  

𝑟𝑟𝑖𝑖(𝑅𝑅)
𝜎̂𝜎𝑅𝑅−𝑖𝑖√1 − h𝑖𝑖𝑖𝑖(𝑅𝑅)

      𝑓𝑓𝑓𝑓𝑓𝑓    𝑖𝑖 ∈ 𝑅𝑅,

𝑟𝑟𝑖𝑖(𝑅𝑅)
𝜎̂𝜎𝑅𝑅√1 + h𝑖𝑖𝑖𝑖(𝑅𝑅)

           𝑓𝑓𝑓𝑓𝑓𝑓    𝑖𝑖 ∈ 𝐷𝐷,
 

 
 
given by  h𝑖𝑖𝑖𝑖(𝑅𝑅) = 𝑥𝑥𝑖𝑖𝑇𝑇(𝑋𝑋𝑅𝑅𝑇𝑇𝑋𝑋𝑅𝑅)−1𝑥𝑥𝑖𝑖. 

Step 6 Since the distribution of  𝑅𝑅𝑅𝑅𝑟𝑟𝑖𝑖∗ is 
 

CP(𝑅𝑅𝑅𝑅𝑟𝑟𝑖𝑖∗) = median(𝑅𝑅𝑅𝑅𝑅𝑅𝑖𝑖∗) ± 3MAD(𝑅𝑅𝑅𝑅𝑟𝑟𝑖𝑖∗) 
 
 

𝑅𝑅𝑅𝑅h𝑖𝑖𝑖𝑖∗ =

{ 
 
  

h𝑖𝑖𝑖𝑖(𝑅𝑅)
1 − h𝑖𝑖𝑖𝑖(𝑅𝑅)

          𝑓𝑓𝑓𝑓𝑓𝑓    𝑖𝑖 ∈ 𝑅𝑅,

h𝑖𝑖𝑖𝑖(𝑅𝑅)
1 + h𝑖𝑖𝑖𝑖(𝑅𝑅)

           𝑓𝑓𝑓𝑓𝑓𝑓     𝑖𝑖 ∈ 𝐷𝐷,
 

 
CP(𝑅𝑅𝑅𝑅h𝑖𝑖𝑖𝑖∗ ) = median(𝑅𝑅𝑅𝑅h𝑖𝑖𝑖𝑖∗ ) + 3MAD(𝑅𝑅𝑓𝑓h𝑖𝑖𝑖𝑖∗ )  

An observation is considered HLPs if  𝑅𝑅𝑅𝑅h𝑖𝑖𝑖𝑖∗   value is greater than the CP(𝑅𝑅𝑅𝑅h𝑖𝑖𝑖𝑖∗ )  

 

𝑅𝑅𝑅𝑅𝑅𝑅𝑖𝑖∗ =

{ 
 
  

𝑟𝑟𝑖𝑖(𝑅𝑅)
𝜎̂𝜎𝑅𝑅−𝑖𝑖√1 − h𝑖𝑖𝑖𝑖(𝑅𝑅)

      𝑓𝑓𝑓𝑓𝑓𝑓    𝑖𝑖 ∈ 𝑅𝑅,

𝑟𝑟𝑖𝑖(𝑅𝑅)
𝜎̂𝜎𝑅𝑅√1 + h𝑖𝑖𝑖𝑖(𝑅𝑅)

           𝑓𝑓𝑓𝑓𝑓𝑓    𝑖𝑖 ∈ 𝐷𝐷,
 

 
 
given by  h𝑖𝑖𝑖𝑖(𝑅𝑅) = 𝑥𝑥𝑖𝑖𝑇𝑇(𝑋𝑋𝑅𝑅𝑇𝑇𝑋𝑋𝑅𝑅)−1𝑥𝑥𝑖𝑖. 

Step 6 Since the distribution of  𝑅𝑅𝑅𝑅𝑟𝑟𝑖𝑖∗ is 
 

CP(𝑅𝑅𝑅𝑅𝑟𝑟𝑖𝑖∗) = median(𝑅𝑅𝑅𝑅𝑅𝑅𝑖𝑖∗) ± 3MAD(𝑅𝑅𝑅𝑅𝑟𝑟𝑖𝑖∗) 
 
 

𝑅𝑅𝑅𝑅h𝑖𝑖𝑖𝑖∗ =

{ 
 
  

h𝑖𝑖𝑖𝑖(𝑅𝑅)
1 − h𝑖𝑖𝑖𝑖(𝑅𝑅)

          𝑓𝑓𝑓𝑓𝑓𝑓    𝑖𝑖 ∈ 𝑅𝑅,

h𝑖𝑖𝑖𝑖(𝑅𝑅)
1 + h𝑖𝑖𝑖𝑖(𝑅𝑅)

           𝑓𝑓𝑓𝑓𝑓𝑓     𝑖𝑖 ∈ 𝐷𝐷,
 

 
CP(𝑅𝑅𝑅𝑅h𝑖𝑖𝑖𝑖∗ ) = median(𝑅𝑅𝑅𝑅h𝑖𝑖𝑖𝑖∗ ) + 3MAD(𝑅𝑅𝑓𝑓h𝑖𝑖𝑖𝑖∗ )  

An observation is considered HLPs if  𝑅𝑅𝑅𝑅h𝑖𝑖𝑖𝑖∗   value is greater than the CP(𝑅𝑅𝑅𝑅h𝑖𝑖𝑖𝑖∗ )  

 

𝑅𝑅𝑅𝑅𝑅𝑅𝑖𝑖∗ =

{ 
 
  

𝑟𝑟𝑖𝑖(𝑅𝑅)
𝜎̂𝜎𝑅𝑅−𝑖𝑖√1 − h𝑖𝑖𝑖𝑖(𝑅𝑅)

      𝑓𝑓𝑓𝑓𝑓𝑓    𝑖𝑖 ∈ 𝑅𝑅,

𝑟𝑟𝑖𝑖(𝑅𝑅)
𝜎̂𝜎𝑅𝑅√1 + h𝑖𝑖𝑖𝑖(𝑅𝑅)

           𝑓𝑓𝑓𝑓𝑓𝑓    𝑖𝑖 ∈ 𝐷𝐷,
 

 
 
given by  h𝑖𝑖𝑖𝑖(𝑅𝑅) = 𝑥𝑥𝑖𝑖𝑇𝑇(𝑋𝑋𝑅𝑅𝑇𝑇𝑋𝑋𝑅𝑅)−1𝑥𝑥𝑖𝑖. 

Step 6 Since the distribution of  𝑅𝑅𝑅𝑅𝑟𝑟𝑖𝑖∗ is 
 

CP(𝑅𝑅𝑅𝑅𝑟𝑟𝑖𝑖∗) = median(𝑅𝑅𝑅𝑅𝑅𝑅𝑖𝑖∗) ± 3MAD(𝑅𝑅𝑅𝑅𝑟𝑟𝑖𝑖∗) 
 
 

𝑅𝑅𝑅𝑅h𝑖𝑖𝑖𝑖∗ =

{ 
 
  

h𝑖𝑖𝑖𝑖(𝑅𝑅)
1 − h𝑖𝑖𝑖𝑖(𝑅𝑅)

          𝑓𝑓𝑓𝑓𝑓𝑓    𝑖𝑖 ∈ 𝑅𝑅,

h𝑖𝑖𝑖𝑖(𝑅𝑅)
1 + h𝑖𝑖𝑖𝑖(𝑅𝑅)

           𝑓𝑓𝑓𝑓𝑓𝑓     𝑖𝑖 ∈ 𝐷𝐷,
 

 
CP(𝑅𝑅𝑅𝑅h𝑖𝑖𝑖𝑖∗ ) = median(𝑅𝑅𝑅𝑅h𝑖𝑖𝑖𝑖∗ ) + 3MAD(𝑅𝑅𝑓𝑓h𝑖𝑖𝑖𝑖∗ )  

An observation is considered HLPs if  𝑅𝑅𝑅𝑅h𝑖𝑖𝑖𝑖∗   value is greater than the CP(𝑅𝑅𝑅𝑅h𝑖𝑖𝑖𝑖∗ )  

 

where MAD(𝑅𝑅𝑅𝑅𝑅𝑅𝑖𝑖
∗) = median{| 𝑅𝑅𝑅𝑅𝑟𝑟𝑖𝑖

∗ − median(𝑅𝑅𝑅𝑅𝑟𝑟𝑖𝑖
∗)|}/0.6745.  

where MAD(𝑅𝑅𝑅𝑅𝑅𝑅𝑖𝑖
∗) = median{| 𝑅𝑅𝑅𝑅𝑟𝑟𝑖𝑖

∗ − median(𝑅𝑅𝑅𝑅𝑟𝑟𝑖𝑖
∗)|}/0.6745.  

𝑅𝑅𝑅𝑅𝑅𝑅𝑖𝑖∗ =

{ 
 
  

𝑟𝑟𝑖𝑖(𝑅𝑅)
𝜎̂𝜎𝑅𝑅−𝑖𝑖√1 − h𝑖𝑖𝑖𝑖(𝑅𝑅)

      𝑓𝑓𝑓𝑓𝑓𝑓    𝑖𝑖 ∈ 𝑅𝑅,

𝑟𝑟𝑖𝑖(𝑅𝑅)
𝜎̂𝜎𝑅𝑅√1 + h𝑖𝑖𝑖𝑖(𝑅𝑅)

           𝑓𝑓𝑓𝑓𝑓𝑓    𝑖𝑖 ∈ 𝐷𝐷,
 

 
 
given by  h𝑖𝑖𝑖𝑖(𝑅𝑅) = 𝑥𝑥𝑖𝑖𝑇𝑇(𝑋𝑋𝑅𝑅𝑇𝑇𝑋𝑋𝑅𝑅)−1𝑥𝑥𝑖𝑖. 

Step 6 Since the distribution of  𝑅𝑅𝑅𝑅𝑟𝑟𝑖𝑖∗ is 
 

CP(𝑅𝑅𝑅𝑅𝑟𝑟𝑖𝑖∗) = median(𝑅𝑅𝑅𝑅𝑅𝑅𝑖𝑖∗) ± 3MAD(𝑅𝑅𝑅𝑅𝑟𝑟𝑖𝑖∗) 
 
 

𝑅𝑅𝑅𝑅h𝑖𝑖𝑖𝑖∗ =

{ 
 
  

h𝑖𝑖𝑖𝑖(𝑅𝑅)
1 − h𝑖𝑖𝑖𝑖(𝑅𝑅)

          𝑓𝑓𝑓𝑓𝑓𝑓    𝑖𝑖 ∈ 𝑅𝑅,

h𝑖𝑖𝑖𝑖(𝑅𝑅)
1 + h𝑖𝑖𝑖𝑖(𝑅𝑅)

           𝑓𝑓𝑓𝑓𝑓𝑓     𝑖𝑖 ∈ 𝐷𝐷,
 

 
CP(𝑅𝑅𝑅𝑅h𝑖𝑖𝑖𝑖∗ ) = median(𝑅𝑅𝑅𝑅h𝑖𝑖𝑖𝑖∗ ) + 3MAD(𝑅𝑅𝑓𝑓h𝑖𝑖𝑖𝑖∗ )  

An observation is considered HLPs if  𝑅𝑅𝑅𝑅h𝑖𝑖𝑖𝑖∗   value is greater than the CP(𝑅𝑅𝑅𝑅h𝑖𝑖𝑖𝑖∗ )  

 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑖𝑖
∗ = √(𝜑𝜑𝑖𝑖 − 𝜑̅𝜑𝑅𝑅)𝑇𝑇Σ𝜑𝜑𝑅𝑅

−1(𝜑𝜑𝑖𝑖 − 𝜑̅𝜑𝑅𝑅),               𝑖𝑖 = 1,2, … , 𝑛𝑛 

where 𝜑̅𝜑𝑅𝑅 and Σ𝜑𝜑𝑅𝑅
−1 are the mean and inverse covariance  matrix of 𝜑𝜑, respectively.   

 
𝐶𝐶𝐶𝐶𝐶𝐶𝐹𝐹𝐹𝐹𝐹𝐹𝑖𝑖

∗ = median (𝑅𝑅𝐹𝐹𝐹𝐹𝐹𝐹𝑖𝑖
∗) + 3MAD(𝑅𝑅𝐹𝐹𝐹𝐹𝐹𝐹𝑖𝑖

∗)  

 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑖𝑖
∗ = √(𝜑𝜑𝑖𝑖 − 𝜑̅𝜑𝑅𝑅)𝑇𝑇Σ𝜑𝜑𝑅𝑅

−1(𝜑𝜑𝑖𝑖 − 𝜑̅𝜑𝑅𝑅),               𝑖𝑖 = 1,2, … , 𝑛𝑛 

where 𝜑̅𝜑𝑅𝑅 and Σ𝜑𝜑𝑅𝑅
−1 are the mean and inverse covariance  matrix of 𝜑𝜑, respectively.   

 
𝐶𝐶𝐶𝐶𝐶𝐶𝐹𝐹𝐹𝐹𝐹𝐹𝑖𝑖

∗ = median (𝑅𝑅𝐹𝐹𝐹𝐹𝐹𝐹𝑖𝑖
∗) + 3MAD(𝑅𝑅𝐹𝐹𝐹𝐹𝐹𝐹𝑖𝑖

∗)  

 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑖𝑖
∗ = √(𝜑𝜑𝑖𝑖 − 𝜑̅𝜑𝑅𝑅)𝑇𝑇Σ𝜑𝜑𝑅𝑅

−1(𝜑𝜑𝑖𝑖 − 𝜑̅𝜑𝑅𝑅),               𝑖𝑖 = 1,2, … , 𝑛𝑛 

where 𝜑̅𝜑𝑅𝑅 and Σ𝜑𝜑𝑅𝑅
−1 are the mean and inverse covariance  matrix of 𝜑𝜑, respectively.   

 
𝐶𝐶𝐶𝐶𝐶𝐶𝐹𝐹𝐹𝐹𝐹𝐹𝑖𝑖

∗ = median (𝑅𝑅𝐹𝐹𝐹𝐹𝐹𝐹𝑖𝑖
∗) + 3MAD(𝑅𝑅𝐹𝐹𝐹𝐹𝐹𝐹𝑖𝑖

∗)  
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MONTE CARLO SIMULATION STUDY

In this section, we consider two different simulation 
studies. 

SIMULATION 1

The first simulation study is performed to assess the 
performance of our proposed RFIID method and 
compare its performance with the existing ID and FIID 
methods. As per Mohammed, Habshah and Rahmatullah 
Imon (2015), we consider a general linear regression 
model with p explanatory variables given as:    

where each of the regressors is generated from the 
uniform distribution (0,10), and ei is generated from 
standard normal distribution with varying sample of 
sizes, n = 50,100,150,and 200. Various proportion of 
influential points (α = 0.05,0.10,0,15 and 0,20) and p 
= 3 and p = 5 are being considered. For  p = 3 and p = 
5, we set  B0 =1, B1 =2, B2 = 3, B3 = 4 and B0 = 1, B1 = 
2, B2 = 3, B3 = 4, B4 = 5,  B5 = 6 as the true parameter 
values, respectively. The influential observations are 
generated such that the independent variables were 
generated from Uniform Distribution U(20,30) and 
the response variables were generated following the 
above linear equation. In each simulation run, there are 
10,000 replications. Tables 1-2 exhibit the percentage 
of correct detection, masking and swamping of unusual 
observations (IOs) for p = 3 and =5 , respectively. A good 
method is one that has the highest percentage of correct 
detection of IOs and least percentages of swamping and 
masking. It can be seen from the tables that at 5% IOs, 

all the three methods successfully able to detect all the 
IOs irrespective of the sample sizes. However, the RFIID 
has the smallest percentage of swamping, followed by 
FIID and ID. The results of Tables (1-2) signify that the 
performance of FIID and ID decreases (percentage of 
detection of IOs decreases and percentage of swamping 
increases) as the percentage of IOs increases. On the 
other hand, the RFIID remains steady, with 100% correct 
detection of IOs with very least swamping rate compared 
to the ID and FIID methods. This results show the merit 
of the proposed RFIID method.

SIMULATION 2

The second simulation study has been conducted to 
investigate the computer running times of our proposed 
LMS-RMDRFCH for the detection of suspected unusual 
observations and to compare its running times with the 
LMS-RMDISE and GUM method. The same simulation 
design as in the first simulation is carried out.  Due 
to space constraint, we only present the results for 
p = 3 with various number of sample sizes, n = 
(20,40,60,80,100,150,200).  The simulation was repeated  
10,000 times. 

The average of suspected unusual observations 
(SUO) detected and the running times for the three 
methods (LMS-RMDRFCH , GUM and LMS-RMDISE ) are 
presented in Table 3. It can be seen from Table 3 that 
the proposed LMS-RMDRFCH outperformed the other two 
methods in term of having the least computer running 
time. The appealing performance of the LMS-RMDRFCH 
can quickly be observed in Figure 2. It is also interesting 
to observe that the number of SUO detected by LMS-
RMDRFCH is the closest to the actual number of IOs, 
followed by LMS-RMDRFCH and GUM method.

FIGURE 1. plot of (RFIID) against (RFGLV)
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TABLE 1. Correct detection of influential observations, Masking and Swamping for simulation data, when p=3

α n

Percentage of
Correct detection

Percentage of
Masking

Percentage of
Swamping

ID FIID RFIID ID FIID RFIID ID FIID RFIID

5%

50 100 100 100 0 0 0 7.38 3.22 1.15
100 100 100 100 0 0 0 5.07 2.60 1.16
150 100 100 100 0 0 0 4.04 2.50 1.99
200 100 100 100 0 0 0 6.03 2.29 1.71

10%

50 100 100 100 0 0 0 6.56 2.53 1.05
100 94.57 100 100 5.43 0 0 7.01 3.24 2.09
150 93.89 100 100 6.11 0 0 5.34 2.17 1.39
200 93.50 100 100 6.50 0 0 9.02 2.85 1.75

15%

50 95.70 99.90 99.90 4.30 0.1 0.01 8.71 3.15 2.05
100 96.06 97.60 100 3.94 2.4 0 10.68 3.35 1.94
150 93.45 98.1 100 6.55 1.90 0 12.25 4.11 2.32
200 91.52 98.19 100 8.48 1.81 0 13.87 4.97 2.95

20%

50 88.36 97.99 99.98 11.64 2.01 0.02 17.30 3.23 2.54
100 90.36 98.89 100 9.64 1.11 0 19.75 3.05 2.80
150 87.29 98.8 100 12.71 1.20 0 18.15 4.87 2.95
200 89.60 98.1 100 10.40 1.90 0 20.66 5.79 3.39

TABLE 2. Correct detection of influential observations, Masking and Swamping for simulation data, when p=5

α n

Percentage of
 Correct detection

Percentage of
 Masking

Percentage of
Swamping

ID FIID RFIID ID FIID RFIID ID FIID RFIID

5%

50 100 100 100 0 0 0 8.48 3.21 2.85
100 100 100 100 0 0 0 6.17 2.30 1.16
150 100 100 100 0 0 0 7.30 3.20 2.09
200 100 100 100 0 0 0 9.04 2.39 1.79

10%

50 100 100 100 0 0 0 5.60 2.33 1.80
100 93.67 100 100 6.33 0 0 8.90 3.14 3.09
150 92.79 100 100 7.21 0 0 9.43 2.77 1.89
200 94.60 99.2 100 5.40 0.8 0 10.02 3.95 1.95

15%

50 91.6 98.9 99.70 8.40 1.10 0.30 9.71 2.92 2.95
100 94.16 96.80 100 5.84 1.2 0 11.78 3.77 1.98
150 90.35 97.98 100 9.65 2.02 0 12.34 4.91 3.06
200 91.42 97.9 100 8.58 2.01 0 14.45 4.87 1.82

20%

50 87.16 98.91 99.50 12.84 1.09 0.50 19.20 5.73 2.84
100 89.35 98.9 100 10.65 2.10 0 18.54 367 2.90
150 86.19 98.1 100 13.81 1.90 0 20.30 4.97 3.79
200 84.7 97.4 99.9 15.30 2.60 0.10 22.70 6.99 4.39
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TABLE 3. Average of suspected unusual observations (SUO) detection and Running time of GUM, LMS-RMDISE and 
LMS-RMDRFCH  for IOs contamination

α n Actual
No. of

IOs

GUM LMS-RMDISE LMS-RMDRFCH

Average 
No. of 
SUO

Running 
Times

(second)

Average 
No. of 
SUO

Running 
Times

(second)

Average
No. of SUO

Running 
Times

(second)

5%

20 1 2.410 145 2.332 101 2.114 75
40 2 3.332 160 3.034 120 2.089 81
60 3 3.223 193 3.203 140 3.125 100
80 4 4.493 240 4.372 180 4.287 121
100 5 5.326 301 5.248 240 5.089 140
150 7 8.534 410 7.986 302 7.763 201
200 10 10.210 590 10.205 390 10.143 215

10%

20 2 3.354 144 3.034 103 2.289 74
40 	 4 4.543 159 4.362 121 4.258 82
60 6 6.451 192 6.402 140 6.345 103
80 8 8.451 245 8.392 180 8.378 120
100 10 10.452 303 10.39 242 10.201 141
150 15 16.012 415 15.987 301 15.89 202
200 20 20.952 589 20.893 391 20.37 216

15%

20 3 3.491 146 3.382 101 3.298 75
40 6 6.489 160 6.390 120 6.378 80
60 9 9.437 194 9.429 140 9.401 100
80 12 12.468 243 12.429 181 12.287 122
100 15 15.368 300 15.208 241 15.182 140
150 22 23.217 414 23.683 302 22.981 201
200 30 31.904 591 30.987 390 30.410 214

20%

20 4 4.543 148 4.3982 100 4.013 74
40 8 8.651 162 8.581 121 8.112 81
60 12 12.968 198 12.629 142 12.212 103
80 16 16.892 249 16.484 182 16.192 122
100 20 20.765 306 20.791 241 20.105 143
150 30 30.989 419 30.783 303 30.129 204
200 40 41.671 595 41.583 393 40.551 215

REAL EXAMPLE

Real data set is used to further assess the performance 
of our proposed RFIID as compared to ID and FIID 
methods. The assessment of the method is based on the 
percentage change of the OLS estimates before and after 
deleting the IOs from the original data based on the ID, 
FIID and RFID.  A good method is one that has the largest 
percentage change of an estimate. Another criterion used 
to evaluate the performance of a method is based on the 
SE of an estimates such that it has the least value of SE 

after the deletion of the IOs. The percentage of change 
of the OLS estimate is defined as follows:

where 

PCE = |
𝛼̂𝛼𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 − 𝛼̂𝛼𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂

𝛼̂𝛼𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂
| × 100% 

 
 
where 𝛼̂𝛼𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂 and 𝛼̂𝛼𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃  are the OLS estimates for 
the original data with IOs and the remaining data after 
IOs have been deleted, respectively.  |.| refers to the 
absolute value. 

PCE = |
𝛼̂𝛼𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 − 𝛼̂𝛼𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂

𝛼̂𝛼𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂
| × 100% 

 
 
where 𝛼̂𝛼𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂 and 𝛼̂𝛼𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 
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GUNST AND MASON DATA SET

The Gunst and Mason data set taken from Gunst and 
Mason (1980) is employed to show the merit of our RFIID 
method. This data set contains 49 observations, i.e., name 
of countries (Selected Demographic Characteristics of 
Countries of the World) and six independent variables 
(INFD, PHYS, DENS, AGDS, LIT, HIED) with response 
variable (GNP). The measures of diagnostic and their 
cut-off points (in parenthesis) are presented in Table 
4.  It can be observed from Table 4 that GUM and LMS-
RMDISE spotted 18 and 17 observations as suspected 
unusual observation in the first stage of ID and FIID, 
respectively. On the other hand, the LMS-RMDRFCH 
diagnosed 18 suspected IOs. From Figure 3(a) (Index vs 
Influence distance ID plot), it shows that ID confirmed 
only 13 cases as IOs. The FIID detects observations 
(4,7,25,33,42,46) as IOs and (cases 27,17,5,39) as good 
leverage points, as shown in Figure 3(b). It is interesting 
to note that the proposed RFIID technique in Figure 3(c) 
diagnosed observations (1,4,7,25,31,41,42,45,46) as IOs 

while observations (3,7,20,37) as good leverage values. 
The performance of the methods is further investigated 
based on the PCE and the SE of the estimates after deleting 
the IOs from the original data. The PCE and the SE of the 
OLS estimates are displayed in Table 5. 

The results of Table 5 indicate that the RFIID is very 
successful in the detection of IOs because the PCEs-
RFIID- based values for almost all parameter estimates 
are the highest, followed by the PCEs-FIID- based values 
and PCEs-ID- based values. Moreover, the SEs for the 
estimates based on RFIID method are the smallest. Table 
5 results show the merit of RFIID where it correctly 
identifies IOs and makes the SEs of the estimates become 
smaller when IOs are removed from the original data set. 
Furthermore, the computational running time for the 
LMS-RMDRFCH (RFIID) is the shortest (1.32 s), followed 
by the LMS-RMDISE (FIID) (2.14 s) and GUM (ID) (3.30 
s). These results are in agreement with the results of 
the simulation study where the RFIID has the least 
computational running time.

FIGURE 2. Running time GUM, LMS-RMDISE and LMS-RMDRFCH for each sample 
size and contamination level for the case of IOs contamination
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TABLE 5. The values of PCE for RFIID, ID and FIID based on OLS for Gunst and Mason data set

Variables

Original
Data

Removed IOs by
ID

[ 13 observations]

Removed IOs by
FIID

[(6 Observation)]

Removed IOs by RFIID
[ (9 Observations)]

Estimation
(S.E)

Estimation
(S.E) PCE

Estimation
(S.E) PCE

Estimation
(S.E) PCE

Constant 116.455 
(344.051)

83.071 
(244.985)

28.66
(28.80)

101.478 
(217.577)

12.86
(36.76)

133.0
(154.30)

14.20
(55.15)

INFD -3.367*
(1.973)

-2.274. 
(1.329)

32.46
(32.64)

-2.183. 
(1.263)

35.16
(35.98)

-1.663**
(0.189)

50.60
(90.42)

PHYS -0.004 
(0.068)

-0.003 
(0.056)

25
(17.64)

-0.011 
(0.043)

175
(36.76)

-0.014
(0.030)

250
(55.88)

DENS -0.197 
(0.373) 0.728 (0.687) 469.54

(84.18) 0.033 (0.243) 116.75
(39)

-0.009
(0.173)

104.56
(53.61)

AGNS 0.003 (0.010) -0.033 
(0.033)

1200
(230)

-0.001 
(0.007)

133.33
(30)

-0.0003
(0.005)

110
(50)

LIT 5.638 (3.354) 4.595. (2.511) 18.49
(25.13)

4.593* 
(2.211)

18.53
(34)

4.040**
(1.576)

28.34
(53)

HIED 0.683**
(0.167)

0.557*
(0.176)

18.44
(5.38)

0.484**
(0.155)

29.13
7.18

0.030***
(0.149)

95.60
(10.77)

Residuals
Std.Errors 

220 224.4 55.38

F-Statistics 9.803** 9.474*** 3.47 9.172** 8.783*** 10.40

Note:  * p < 0.1; ** p < 0.05; *** p < 0.01

FIGURE 3. a) ID, b) FIID and c) RFIID plots for Gunst and Mason data set
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CONCLUSIONS

In this paper, we propose a Robust and Fast Improvised 
Influential Distance RFIID method for detecting 
influential observations in multiple linear regression. 
The existing ID method is capable of detecting IOs at 5% 
of contamination but it suffers from swamping effects. 
As the percentage of IOs increases to more than 5%, 
the performance of ID prone to decrease with higher 
masking and swamping effects. The performance of FIID 
is also not very encouraging as it inclines to suffer from 
swamping effect when the percentage of contamination 
is at least 10%. Moreover, it is not computationally 
stable.  The performance of our proposed RFIID has 
been comprehensively examined by employing Monte 
Carlo simulation study and real data set. The results 
signify that the RFIID is very successful in the detection 
of IOs with imperceptible swamping effects, irrespective 
of the number of independent variables, sample sizes, 
and percentage of contaminations. Another attractive 
feature of RFIID is that it is computationally stable and 
its computational running time is much quicker than the 
ID and FIID.
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