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NON-REGULAR QUADRATIC STOCHASTIC OPERATORS WITH
COUNTABLE STATE SPACE

(Ketidaksekataan Operator Stokastik Kuadratik dengan Set Terbilang)

NASIR GANIKHODJAEV*, OBIDION ANOROV & CHIN HEE PAH

ABSTRACT

In this paper we present an example of non-regular extremal Volterra quadratic stochastic oper-
ator defined on infinite-dimensional simplex. We show that the construction of this operator to
odd dimensional face of infinite-dimensional simplex is non-regular transformation. We employ
method of approximation to prove non-regularity of initial operator.

Keywords: ergodic hypothesis; regular transformation; extremal Volterra quadratic stochastic
operator with infinite state space.

ABSTRAK

Dalam kertas kerja ini, kami memperkenalkan satu contoh operator stokastik kuadratik Volterra
yang ekstrim pada simplex berdemensi tak terhingga. Kami menunjukkan bahawa pemben-
tukan operator ini pada muka dimensi ganjil daripada simpleks dimensi tak terhingga adaladah
penjelmaan yang tidak sekata. Kami menggunakan kaedah penghampiran untuk membuktikan
ketidaksekataan pada operator awal.

Kata kunci: hipotesis ergodik; transfomasi sekata; operator stokastik kuadratik Volterra yang
ekstrim pada set tak terhingga.

1. Introduction

Let (X,F) be a measurable space, where X is a state space and F is σ-algebra on X, and
S(X,F) be the set of all probability measures on (X,F). Let {P (x, y,A) : x, y ∈ X,A ∈ F}
be a family of functions on X × X × F such that P (x, y, ·) ∈ S(X,F); P (x, y,A) is a
measurable function on (X × X,F ⊗ F) which regarded as a function of two variables of x
and y with fixed A ∈ F ; and P (x, y,A) = P (y, x,A) for any x, y ∈ X and A ∈ F .

By specifying such collection of functions {P (x, y,A) : x, y ∈ X,A ∈ F} we introduce a
non-linear transformation V : S(X,F) → S(X,F) which defined by

(V λ)(A) =

∫
X

∫
X
P (x, y,A)dλ(x)dλ(y), (1)

where A ∈ F is an arbitrary measurable set.
The case with finite state space X was considered by Bernstein (1942). If X = {1, 2, · · · ,m},

then a set of all probability measures on X is the finite-dimensional simplex Sm−1 = {x =
(x1, x2, · · · , xm) ∈ Rm : ∀i xi ≥ 0,

∑m
i=1 xi = 1} ; a family of functions {P (x, y,A) : x, y ∈

X,A ∈ F} one can represent as a cubic matrix (Pij,k)
m
i,j,k=1 with

a)Pij,k ≥ 0; b)Pij,k = Pji,k; c)

m∑
k=1

Pij,k = 1 for all i, j, k ∈ X,
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where Pij,k = P (ij, {k}). Such transformation V is called quadratic stochastic operator (QSO).
When the state space X = N is an infinite countable set of positive integers, and F is the power
set P(N) of N, i.e. the set of all subsets of N, then

SN = {x = (xi)
∞
i=1 : ∀i xi ≥ 0,

∞∑
i=1

xi = 1} (2)

is the set of all probability measures on (N,P(N)).

Definition 1.1. The set SN is called infinite-dimensional simplex.

In this case one can specify a family of functions {P (i, j, {k}) : i, j ∈ N, {k} ∈ P(N)} as a
tensor {pij,k : i, j, k ∈ N}, and by additivity P (i, j, A) =

∑
k∈A pij,k for arbitrary A ∈ P(N).

Then P (i, j,N) =
∑∞

k=1 pij,k = 1. In this case, the measure P (i, j, ·) is a discrete probability
measure and the corresponding QSO V : SN → SN has the following form

(V x)k =

∞∑
i,j=1

Pij,kxixj , k ∈ N (3)

where the coefficients Pij,k satisfy the following conditions:

a)Pij,k ≥ 0; b)Pij,k = Pji,k; c)

∞∑
k=1

Pij,k = 1 for all i, j, k ∈ N.

2. Infinite Dimensional Simplex

We consider infinite-dimensional simplex SN. Let intSN denote the interior and ∂SN denote
the boundary of SN, where

intSN = {x ∈ SN : ∀i xi > 0}, and ∂SN = SN \ intSN.

For arbitrary subset α ⊂ N the Γα = {x ∈ SN : xi = 0, i /∈ α} is called the face of
infinite-dimensional simplex SN. It is evident that a face Γα is the simplex.
If α = {i} consists of a single point i, then a face Γi is the ith vertex Mi = (δ1i, δ2i, · · · , δmi, · · · )
of the simplex SN, where δij is the Kronecker symbol.

One can consider two type faces: finite-dimensional face Γα if α is a finite subset, and
respectively infinite-dimensional face if α is infinite subset. We select a family of finite-
dimensional faces ΓΛk

such that Λk = {1, 2, · · · , 2k + 1} where k ∈ N. It is evident Λ1 ⊂
Λ2 ⊂ Λ3 ⊂ · · · ⊂ Λn ⊂ · · · and ∪∞

k=1Λk = N.

3. Volterra Quadratic Stochastic Operators with Countable State Space

The quadratic stochastic operator V (3) is called Volterra, if pij,k = 0 for any k /∈ {i, j}. The
biological treatment of such operators is rather clear: the offspring repeats one of its parents.
Evidently for any Volterra QSO

pii,i = 1; pik,k + pki,i = pik,k + pik,i = 1 for all i, k ∈ N, i ̸= k. (4)
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A Volterra QSO V defined on SN has the following form

(V x)k = x2k + 2

∞∑
i=1,i ̸=k

pik,kxixk, (5)

where k ∈ N.
A QSO V is a Volterra if and only if

(V x)k = xk(1 +

∞∑
i=1

akixi) (6)

where A = (aij)
∞
1 is a skew-symmetric matrix with aki = 2pik,k − 1 for i ̸= k, aii = 0 and

|aij | ≤ 1. Here i, j ∈ N.
Suppose {V k(x) ∈ SN : k = 0, 1, 2, · · · } is a trajectory of the initial point x ∈ SN, where

V k+1(x) = V (V k(x)) for all k = 0, 1, 2, · · · , with V 0(x) = x.
In this paper we will study a trajectory behavior of Volterra operators with countable state

space. A point a ∈ SN is called a fixed point of a QSO V if V (a) = a. Let Fix(V ) be a set
of all fixed points of QSO V. It is evident that for any Volterra QSO any vertex Mi is the fixed
point of QSO V, i.e. {M1,M2, · · · } ⊂ Fix(V ). Also it is evident that any face Γα is invariant
subset of Volterra QSO V , that is V (Γα) ⊂ Γα. Thus if the face Γα is a finite-dimensional
simplex, then QSO V is reduced to QSO Vα : Γα → Γα.

A QSO V is called a regular if for any initial point x ∈ SN, a limit

lim
n→∞

V n(x) (7)

exists.
Note that the limit point is a fixed point of a QSO V. Thus the fixed points of QSO describe

a limit or a long run behavior the trajectories at any initial point. A limit behavior of trajectories
and the fixed points of QSO play an important role in many applied problems (Ganikhodjaev
1993; Jenks 1969; Kesten 1970; Lyubich 1992; Lyubich 1971).

4. Ergodicity of QSO

In statistical mechanics an ergodic hypothesis proposes a connection between dynamics and
statistics. In the classical theory the assumption was made that the average time spent in any
region of phase space is proportional to the volume of the region in terms of the invariant
measure, more generally, that time averages may be replaced by space averages. For quadratic
stochastic operators Ulam (1960) suggested an analogue of a measure-theoretic ergodicity, the
following ergodic hypothesis: A nonlinear operator V defined on the finite-dimensional simplex
Sm−1 is called ergodic if the limit

lim
n→∞

1

n

n−1∑
k=0

V k(x) (8)

exists for any x ∈ Sm−1. It is evident that a regular QSO V is ergodic; however, regularity does
not follow from the ergodicity

On the basis of numerical calculations, Ulam (1960) conjectured that an ergodic theorem
holds for any QSO V. In 1977, Zakharevich (1978) proved that in general this conjecture is
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false. He considered the following Volterra operator on S2

x′1 = x1(1 + x2 − x3)

x′2 = x2(1− x1 + x3)

x′3 = x3(1 + x1 − x2)

(9)

and proved that it is a non-ergodic transformation. Later in Ganikhodjaev and Zanin (2004), the
authors established a necessary and sufficient condition to be non-ergodic transformation for
QSO defined on S2. Recently in Ganikhodjaev et al. (2013), the authors studied special classes
of a Volterra QSO defined on S3. While the infinite dimensional Volterra operators are dis-
cussed in Mukhamedov et al. (2005), Mukhamedov et al. (2020) and Embong and Mukhame-
dov (2023).

5. Generalization of Zakharevich’s Example on Infinite-Dimensional Simplex

In this paper we present the generalization of Zakharevich’s example (9) to operator with infinite
state space as follows.

The following QSO are defined on SN one can consider as a generalization of Zakharevich’s
QSO

(V x)1 = x1[1 + x2 − x3 + x4 − x5 + x6 − x7 + · · · ]
(V x)2 = x2[1− x1 + x3 − x4 + x5 − x6 + x7 − · · · ]
· · ·
· · ·
(V x)2n−1 = x2n−1[1 + x1 − x2 + · · · − x2n−2 + x2n − x2n+1 + x2n+2−

x2n+3 + · · · ]
(V x)2n = x2n[1− x1 + x2 − · · · − x2n−1 + x2n+1 − x2n+2 + · · · ]
· · ·
· · ·

(10)

On face ΓΛ1
with Λ1 = {1, 2, 3} and V1 : ΓΛ1

→ ΓΛ1
we have

(V1x)1 = x1[1 + x2 − x3]

(V1x)2 = x2[1− x1 + x3]

(V1x)3 = x3[1 + x1 − x2]

(11)

or

(V1x)1 = x21 + 2x1x2

(V1x)2 = x22 + 2x2x3

(V1x)3 = x23 + 2x3x1

(12)
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On face ΓΛ2
with Λ2 = {1, 2, 3, 4, 5} and V2 : ΓΛ2

→ ΓΛ2
we have

(V2x)1 = x1[1 + x2 − x3 + x4 − x5]

(V2x)2 = x2[1− x1 + x3 − x4 + x5]

(V2x)3 = x3[1 + x1 − x2 + x4 − x5]

(V2x)4 = x4[1− x1 + x2 − x3 + x5]

(V2x)5 = x5[1 + x1 − x2 + x3 − x4]

(13)

or

(V2x)1 = x21 + 2x1x2 + 2x1x4

(V2x)2 = x22 + 2x2x3 + 2x2x5

(V2x)3 = x23 + 2x3x1 + 2x3x4

(V2x)4 = x24 + 2x4x2 + 2x4x5

(V2x)5 = x25 + 2x5x1 + 2x5x3

(14)

On face ΓΛ3
with Λ3 = {1, 2, 3, 4, 5, 6, 7} and V3 : ΓΛ3

→ ΓΛ3
we have

(V3x)1 = x1[1 + x2 − x3 + x4 − x5 + x6 − x7]

(V3x)2 = x2[1− x1 + x3 − x4 + x5 − x6 + x7]

(V3x)3 = x3[1 + x1 − x2 + x4 − x5 + x6 − x7]

(V3x)4 = x4[1− x1 + x2 − x3 + x5 − x6 + x7]

(V3x)5 = x5[1 + x1 − x2 + x3 − x4 + x6 − x7]

(V3x)6 = x6[1− x1 + x2 − x3 + x4 − x5 + x7]

(V x)7 = x7[1 + x1 − x2 + x3 − x4 + x5 − x6]

(15)

or

(V3x)1 = x21 + 2x1x2 + 2x1x4 + 2x1x6

(V3x)2 = x22 + 2x2x3 + 2x2x5 + 2x2x7

(V3x)3 = x23 + 2x3x1 + 2x3x4 + 2x3x6

(V3x)4 = x24 + 2x4x2 + 2x4x5 + 2x4x7

(V3x)5 = x25 + 2x5x1 + 2x5x3 + 2x5x6

(V3x)6 = x26 + 2x6x2 + 2x6x4 + 2x6x7

(V x)7 = x27 + 2x7x1 + 2x7x3 + 2x7x5

(16)

Recall that

Definition 5.1. A Volterra QSO V with finite state space X, where |X| = m, is called uniform
if in any row and respectively in any column of a skew-symmetric matrix A = (aij)

m
i,j=1 the

number of positive entries is equal to the number of negative ones.

It is evident that they are uniform Volterra QSOs if and only if m is odd positive integer.
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The QSO (9) considered by Zakharevich is a uniform Volterra operator with m = 3.. Thus
the QSO (10) is approximated by the sequence of uniform Volterra QSOs Vn defined on finite-
dimensional simplexes. We investigate the trajectory behaviour of this operator (10) and prove
that it is non-regular transformation.

Let ω(x(0) is the set of limit points of trajectory {x(n) : n = 0, 1, · · · }. Below we describe
the limit points of arbitrary trajectory. Note that it is easy to see that for any finite-dimensional
face Γα with |α| = 2k + 1, there exist the fixed point xα ∈ intΓα with xα(i) = 1

2k+1 for all
i ∈ α.

Respectively, for any face Γα with |α| = 2k the fixed point does not exist in intΓα.

Proposition 5.2. For considered QSO (10) fixed point does not exist in intSZ+ .

Proof. For n = 1 we have

(V x)1 = x1[1 +
∑∞

i=1 x2i −
∑∞

i=1 x2i−1 + x1]

(V x)2 = x2[1−
∑∞

i=1 x2i +
∑∞

i=1 x2i−1 − 2x1 + x2]
(17)

and for n > 1 we have

(V x)2n−1 = x2n−1[1 +
∑n−1

i=1 x2i−1 −
∑n−1

i=1 x2i +
∑∞

i=n x2i −
∑∞

i=n+1 x2i−1]

(V x)2n = x2n[1−
∑n

i=1 x2i−1 +
∑n−1

i=1 x2i −
∑∞

i=n+1 x2i +
∑∞

i=n+1 x2i−1]
(18)

Let O =
∑∞

i=1 x2i−1, and E =
∑∞

i=1 x2i with O + E = 1.
Then for n = 1 we have

(V x)1 = x1[1 + E −O + x1]

(V x)2 = x2[1− E +O + x2 − 2x1]
(19)

and for n > 1 we have

(V x)2n−1 = x2n−1[1 + E −O + x2n−1 + 2
∑n−1

i=1 x2i−1 − 2
∑n−1

i=1 x2i]

(V x)2n = x2n[1− E +O + x2n − 2
∑n

i=1 x2i−1 + 2
∑n−1

i=1 x2i]
(20)

Assume x̄ ∈ intSN is an fixed point, i.e. V (x̄) = x̄. Let Ō =
∑∞

i=1 x̄2i+1, and Ē =∑∞
i=0 x̄2i where Ō + Ē = 1.

From (15) for n = 1 we have x̄1 = Ō − Ē and x̄2 = Ō − Ē. From (16) for n = 2 we have
x̄3 = Ō − Ē and x̄4 = Ō − Ē. By induction one can prove that for any n ∈ N x̄n = Ō − Ē.
Thus if Ō − Ē = 0, then x̄i = 0 for all i. If Ō − Ē > 0, then

∑∞
i=0 x̄i = ∞. Therefore there

does not exist fixed point belonging intSN.

Similarly one can prove that there does not exist a fixed point belonging interior of infinite-
dimensional face of SN. □

Thus we have proved the following statement.

Theorem 5.3. Any fixed point belongs to interior of finite dimensional face Γα with |α| is
odd positive integer, i.e. there does not exist a fixed point belonging to the interior of infinite-
dimensional face of SN.
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6. Lyapunov function

A continuous function φ : intSm−1 → R is called a Lyapunov function for a QSO V if
φ(V (x)) ≥ φ(x) for all x (or φ(V (x)) ≤ φ(x) for all x). A Lyapunov function is a very helpful
to describe and upper estimate ω(x0). However there is no general recipe on how to find such
Lyapunov function. In Ganikhodjaev and Zanin (2004), Ganikhodjaev (1993) and Zakharevich
(1978), the authors presented examples of Lyapunov functions for dynamical systems.

Below we will use the following theorem.

Theorem 6.1. (Ganikhodjaev 1993) Let p = (p1, · · · , pm) be the repelling fixed point of the
Volterra QSO. Then there exists a global decreasing Lyapunov function of the form φp(x) =

xp1

1 · · · xpm
m , where pi ≥ 0,

m∑
i=1

pi = 1, p ∈ Sm−1.

Let us consider QSO V2n+1 : ΓΛ2n+1
→ ΓΛ2n+1

.

As shown above a point Mn = ( 1
2n+1 ,

1
2n+1 , · · · ,

1
2n+1) ∈ intΓΛ2n+1

is a fixed point. Let us
show that this point is the repelling fixed point for arbitrary n. The Jacobian JV (Mn) is defined
as follows:

JV (Mn) =


1 1

2n+1 − 1
2n+1 · · · 1

2n+1 − 1
2n+1

− 1
2n+1 1 1

2n+1 · · · − 1
2n+1

1
2n+1

...
...

...
. . .

...
− 1

2n+1
1

2n+1 − 1
2n+1 · · · 1 1

2n+1
1

2n+1 − 1
2n+1

1
2n+1 · · · − 1

2n+1 1

 . (21)

It is known that for Volterra quadratic stochastic operator (6) defined on finite-dimensional
simplex one of the eigenvalues of corresponding Jacobian is equal to 1 (see Devaney (2003)
and Ganikhodjaev et al. (2015)).

Theorem 6.2. One of the eigenvalues of JV (Mn) is equal to 1 and for all other eigenvalues we
have |λ| > 1 that is the fixed point Mn is repelling.

Proof. Let us consider a matrix
1− λ b −b · · · b −b
−b 1− λ b · · · −b b
...

...
...

. . .
...

−b b −b · · · 1− λ b
b −b b · · · −b 1− λ

 (22)

where b = 1
2n+1 .

For n = 1 we have the characteristic equation (1 − λ)3 + 1
3(1 − λ) = 0, with λ1 = 1 and

(1− λ)2 = −1
3 , i.e. |λ2,3| > 1.

For n = 2 we have the characteristic equation (1 − λ)5 + 2
5(1 − λ)3 + 1

125(1 − λ) = 0, with
λ1 = 1, and (1− λ)2 < 0, i.e. |λ2,3,4,5| > 1.
For n = 3 we have the characteristic equation (1−λ)7+ 3

7(1−λ)5+ 5
343(1−λ)3+ 1

16807(1−λ) =

0, with λ1 = 1 and (1− λ)2 < 0, i.e. |λ2,3,4,5,6,7| > 1.
For arbitrary n we have the characteristic equation

(1− λ)2n+1 + a1(1− λ)2n−1 + a2(1− λ)2n−3 + · · ·+ an−1(1− λ)3 + an(1− λ) = 0,
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where all coefficients ai > 0, i = 1, · · · , n. Thus λ1 = 1 and since (1 − λ)2 < 0, we have
|λi| > 1 for i = 2, 3, · · · , 2n+ 1. □

According to Theorem (6.1) the following function φ
(n)
Mn

(xn) = (x1 · x2 · · · x2n+1)
1

2n+1 is
the decreasing Lyapunov function for arbitrary xn ∈ intΓΛ2n+1

.

Now for arbitrary x ∈ SN let xn = (x1, · · · , x2n, 1 −
∑2n

i=1 xi) ∈ ΓΛ2n+1
and φ

(n)
Mn

(xn) =
(x1·x2···x2n+1)

1

2n+1 is the decreasing Lyapunov function for xn ∈ intΓΛ2n+1
, i.e. φ(n)

Mn
(V2n+1xn) <

φ
(n)
Mn

(xn). It is follow from well-known AM-GM inequality. For example, for n = 1,

(x1[1 + x2 − x3] · x2[1− x1 + x3] · x3[1 + x1 − x2])
1

3 < (x1x2x3)
1

3 . (23)

Thus φ(n)
Mn

(V k
2n+1xn) → 0 for k → ∞.

Finally we define a global Lyapunov function on intSN as the following sum

φ(x) =
∞∑
n=1

1

22n+1
φ
(n)
Mn

(xn).

Then φ(V kx) → 0 for k → ∞, that is, the limit set lies on ∂SN. Since Volterra operators leave
the vertices of ∂SN fixed and the faces invariant, the limit set cannot be finite.

Thus we have proved the following statement.

Theorem 6.3. The QSO V (10) is non-regular transformation.

7. Conclusion

We present Volterra quadratic stochastic operator defined on infinite state space N = {1, 2, · · · }
of positive integers and prove that it is non-regular transformation. One can expect that it is also
a non-ergodic transformation. Discussion of this rather difficult problem will be the subject of
future article.
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