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SOLVING FRACTIONAL DIFFERENTIAL EQUATIONS USING 

FRACTIONAL EXPLICIT METHOD  
(Menyelesaikan Persamaan Pembezaan Pecahan Menggunakan Kaedah Tak Tersirat Pecahan)  

YIP LIAN YIUNG & ZANARIAH ABDUL MAJID* 

 

ABSTRACT  

This research is focusing in solving the fractional differential equations (FDEs) for linear and 

non-linear type using fractional explicit method (FEM) with constant step-size. Most of the 

numerical methods for solving FDEs involved the interpolating points of step size ℎ. Some 

modifications were implemented in the derivation technique, where the step size 2ℎ  are 

considered in the formula of the proposed method. The main goal of this research is to derive 

FEM by considering the implementation of second-order Adam-Bashforth method using 

Lagrange interpolation for fractional case. Besides, the order and convergence analysis of the 

developed method will also be investigated in this study. The algorithm of the proposed method 

is written in C language. Based on the numerical results obtained, it is clearly ratified that the 

proposed method converges as the step size, ℎ is getting smaller in solving the FDEs.  

Keywords: fractional differential equations; linear FDE; nonlinear FDE; fractional Riccati 

differential equation; single order FDE  

 

ABSTRAK  

Kajian ini memberi tumpuan dalam menyelesaikan persamaan pembezaan pecahan (PPP) bagi 

jenis linear dan bukan linear menggunakan kaedah tak tersirat pecahan (KTTP) untuk langkah 

malar. Kebanyakkan kaedah berangka bagi penyelesaian PPP melibatkan titik interpolasi saiz 

langkah ℎ. Beberapa pengubahsuaian telah dilaksanakan dalam teknik derivasi, di mana saiz 

langkah 2ℎ dipertimbangkan dalam formula kaedah yang dicadangkan. Matlamat utama kajian 

ini adalah untuk menerbitkan KTTP dengan mempertimbangkan pelaksanaan kaedah Adam-

Bashforth peringkat kedua menggunakan interpolasi Lagrange untuk kes pecahan. Selain itu, 

peringkat dan analisis konvergen bagi kaedah yang dibangunkan juga akan disiasat dalam kajian 

ini. Algoritma bagi kaedah yang dibangunkan ditulis dalam bahasa C. Berdasarkan hasil 

berangka yang diperolehi, jelas menunjukkan bahawa kaedah yang dicadangkan menumpu 

apabila saiz langkah ℎ semakin kecil dalam menyelesaikan PPP.     

Kata kunci: persamaan perbezaan pecahan; linear PPP; bukan linear PPP; persamaan perbezaan 

pecahan Riccati; PPP peringkat satu  

                       

1. Introduction  

The FDEs are crucial in a wide variety of disciplines, including financial economics, modelling 

of materials and diffusion processes. Besides, Troparevsky et al. (2019) claimed that FDEs are 

useful in modelling cases in the field of science and engineering as it is able in capturing 

nonlocality properties. This is because FDEs are not only consider the local aspects of the 

dynamics but also the global development of the system. As a result, they will give more 

accurate approximations of real-world behaviour when compared to standard derivatives. 

Therefore, the solutions for FDEs have received substantial attention due to their importance in 

various fields.  
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According to Biala and Jator (2015b), the equation of FDE is in the form of: 

 

𝐷𝐶 𝑠0
𝛼 𝑦(𝑠) = 𝑓(𝑠, 𝑦(𝑠)),        𝑦(𝑠0) = 𝑦0. (1) 

 

with the order is 0 < 𝛼 < 1. 

In fractional calculus, there are multiple kinds of fractional differential operators, such as 

the Riemann-Liouville differential operator, the Grünwald-Letnikov differential operator and 

the Caputo differential operator. However, the most common differential operators used in 

FDEs are the Riemann-Liouville differential operator and Caputo differential operator. Garappa 

(2009) defined 𝐷𝐶 𝑡0

𝛼  as the fractional Caputo’s 𝛼-derivative operator: 

 

𝐷𝐶 𝑠0
𝛼 = 𝐷𝑅𝐿 𝑠0

𝛼 𝑦(𝑠) − 𝑦(𝑠0), (2) 

 

with 𝐷𝑅𝐿 𝑠0
𝛼 𝑦(𝑠) is the Riemann-Liouville differential operator as: 

 

𝐷𝑅𝐿 𝑠0
𝛼 𝑦(𝑠) =

1

𝛤(𝑚 − 𝛼)
 (

𝑑

𝑑𝑠
)

𝑚

∫
𝑦(𝜏)𝑑𝜏

(𝑠 − 𝜏)𝛼−𝑚+1

𝑠

𝑠0

, 𝛼 > 0, 𝑚 = ⌈𝛼⌉.  (3) 

 

Many of the FDEs cannot be solved analytically, which means that FDEs do not have exact 

solutions. There are situations in which it has been shown that solving FDEs numerically is a 

more effective and convenient method compared to solve them analytically. This is particularly 

when solving the problems which are very complex and enormous. Thus, numerical methods 

have become more crucial when it comes to finding the solutions for the FDEs. In literature, 

some researchers have developed few numerical methods to solve FDEs in the past few years. 

Biala and Jator (2015b) has proposed a family of Implicit Adams Methods (IAMS) for solving 

FDE and the results shown that the errors decrease when 𝛼 increases. Besides, Ahmed (2018) 

proposed the modified fractional Euler method (MFEM) and the outcome shown that when the 

step size decreases, the accuracy improved. Then, Bonab and Javidi (2020) discussed a family 

of multistep explicit method for solving FDEs. They managed to show that the interval of 

stability has been enhanced when the larger stability region is used. Zabidi et al. (2022) has 

proposed an Adams-type multistep method in predict-correct technique for solving differential 

equations of fractional order. 

The goal of this study is to derive FEM in order to approximate the solutions for linear and 

nonlinear FDEs. Most of the existing numerical methods were derived involving the 

interpolating points of step size ℎ. In this study, we aim to implement some modifications in 

the derivation technique by considering the step size of 2ℎ in the formula of the proposed 

method. The derivation is based on Adams-Bashforth method of fractional case by which the 

type of differential operator used in this derivation is the Caputo differential operator. Next, the 

derivation also implements Lagrange interpolation for fractional case. 

2. Fractional Explicit Method (FEM)  

The derivation of FEM will be described in this section by first taking into consideration the 

fractional initial value problems (FIVP) as in the form: 

 

𝐷𝛼𝑦(𝑠) = 𝑓(𝑠, 𝑦(𝑠)),    𝑦𝑘(0) = 𝑦0
𝑘 , 𝑘 = 0,1, … , ⌈𝛼⌉ − 1. (4) 

 

Eq. (4) can be rewritten equivalent to the Volterra integral equation as follows, 
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𝑦(𝑠) = ∑
𝑠𝑘

𝑘!

⌈𝛼⌉−1

𝑘=0

𝑦𝑘(0) +
1

𝛤(𝛼)
∫ [(𝑠 − 𝜏)𝛼−1𝑓(𝜏, 𝑦(𝜏))]

𝑠

0

𝑑𝜏. (5) 

 

According to Diethelm (2010), the methods for FDEs can be constructed by considering the 

methods for classical first-order equations and generalizing the concept in an approximate way. 

Thus, we get Eq. (4) as: 

 

𝐷𝑦(𝑠) = 𝑓(𝑠, 𝑦(𝑠)),    𝑦(0) = 𝑦0. (6) 

 

Simplifying Eq. (5) will yield: 

 

y(s) = y0 +
1

Γ(α)
∫ [(s − τ)α−1f(τ, y(τ))]

s

0

dτ. (7) 

 

Then, at the points 𝑠 = 𝑠𝑛+1 and 𝑠 = 𝑠𝑛, the approximation solutions have been proposed. 

Therefore, 

 

(1) If 𝑠 = 𝑠𝑛+1, 
 

𝑦(𝑠𝑛+1) = 𝑦0 +
1

𝛤(𝛼)
∫ [(𝑠𝑛+1 − 𝜏)𝛼−1𝑓(𝜏, 𝑦(𝜏))]

𝑠𝑛+1

0

𝑑𝜏. (8) 

 

(2) If 𝑠 = 𝑠𝑛, 
 

𝑦(𝑠𝑛) = 𝑦0 +
1

𝛤(𝛼)
∫ [(𝑠𝑛 − 𝜏)𝛼−1𝑓(𝜏, 𝑦(𝜏))]

𝑠𝑛

0

𝑑𝜏. (9) 

 

Subtracting Eq. (8) with Eq. (9) will get: 

 

𝑦(𝑠𝑛+1) = 𝑦(𝑠𝑛) +
1

𝛤(𝛼)
[∫ [(𝑠𝑛+1 − 𝜏)𝛼−1𝑓(𝜏, 𝑦(𝜏))]

𝑠𝑛+1

0

𝑑𝜏 − 

(10) 

∫ [(𝑠𝑛 − 𝜏)𝛼−1𝑓(𝜏, 𝑦(𝜏))] 𝑑𝜏
𝑠𝑛

0

]. 

 

The proposed method of FEM is of order 2. In order to evaluate the approximation solutions, 

two interpolating functions which are 𝐹𝑛 and 𝐹𝑛−2 are considered for Lagrange interpolation. 

Then, we have: 

 

𝑃(𝑠) (≈ 𝑓(𝜏, 𝑦(𝜏))) =
𝑠 − 𝑠𝑛−2

𝑠𝑛 − 𝑠𝑛−2
𝐹𝑛 +

𝑠 − 𝑠𝑛

𝑠𝑛−2 − 𝑠𝑛
𝐹𝑛−2. (11) 

 

Next, we let: 

 

2ℎ = 𝑠𝑛 − 𝑠𝑛−2,       𝜏 = 𝑠.  (12) 
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Eqs. (11) - (12) will be substituted into Eq. (10), yielding: 

 

𝑦(𝑠𝑛+1) = 𝑦(𝑠𝑛) 

+
1

𝛤(𝛼)
[∫ (𝑠𝑛+1 − 𝑠)𝛼−1

𝑠𝑛+1

0

(
𝑠 − 𝑠𝑛−2

𝑠𝑛 − 𝑠𝑛−2
𝐹𝑛 +

𝑠 − 𝑠𝑛

𝑠𝑛−2 − 𝑠𝑛
𝐹𝑛−2) 𝑑𝑠] 

−
1

𝛤(𝛼)
[∫ (𝑠𝑛 − 𝑠)𝛼−1

𝑠𝑛

0

(
𝑠 − 𝑠𝑛−2

𝑠𝑛 − 𝑠𝑛−2
𝐹𝑛 +

𝑠 − 𝑠𝑛

𝑠𝑛−2 − 𝑠𝑛
𝐹𝑛−2) 𝑑𝑠]. 

(13) 

 

Then, evaluating the first fractional integral as: 

 

∫ [(𝑠𝑛+1 − 𝑠)𝛼−1𝑓(𝜏, 𝑦(𝜏))] 𝑑𝜏
𝑠𝑛+1

0

   

= ∑ ∫ (𝑠𝑛+1 − 𝑠)𝛼−1 (
𝑠 − 𝑠𝑛−2

𝑠𝑛 − 𝑠𝑛−2
𝐹𝑛 +

𝑠𝑝+1

𝑠𝑝

𝑛

𝑝=0

 
𝑠 − 𝑠𝑛

𝑠𝑛−2 − 𝑠𝑛
𝐹𝑛−2)  𝑑𝑠,  

= ∑ [
𝐹𝑛

𝑠𝑛 − 𝑠𝑛−2
∫ (𝑠𝑛+1 − 𝑠)𝛼−1 (𝑠 − 𝑠𝑛−2) 𝑑𝑠

𝑠𝑝+1

𝑠𝑝

𝑛

𝑝=0

+  

𝐹𝑛−2

𝑠𝑛−2 − 𝑠𝑛
∫ (𝑠𝑛+1 − 𝑠)𝛼−1 (𝑠 − 𝑠𝑛) 𝑑𝑠

𝑠𝑝+1

𝑠𝑝

],  

= ∑ [
𝐹𝑛

2ℎ
∫ (𝑠𝑛+1 − 𝑠)𝛼−1 (𝑠 − 𝑠𝑛−2) 𝑑𝑠

𝑠𝑝+1

𝑠𝑝

−

𝑛

𝑝=0

 

(14) 

 
𝐹𝑛−2

2ℎ
∫ (𝑠𝑛+1 − 𝑠)𝛼−1 (𝑠 − 𝑠𝑛) 𝑑𝑠

𝑠𝑝+1

𝑠𝑝

]. 

 

Then, we consider the change of variables where 𝑦 = 𝑠𝑛+1 − 𝑠, 𝑑𝑦 = −𝑑𝑠 and substitute 

into Eq. (14). We obtain: 

 

∑ [
𝐹𝑛

2ℎ
∫ (𝑦)𝛼−1 (𝑠𝑛+1 − 𝑦 − 𝑠𝑛−2) (−𝑑𝑦)

𝑠𝑛+1−𝑠𝑝+1

𝑠𝑛+1−𝑠𝑝

𝑛

𝑝=0

−   

𝐹𝑛−2

2ℎ
∫ (𝑦)𝛼−1 (𝑠𝑛+1 − 𝑦 − 𝑠𝑛) (−𝑑𝑦)

𝑠𝑛+1−𝑠𝑝+1

𝑠𝑛+1−𝑠𝑝

],  

= ∑ {
𝐹𝑛

2ℎ
[− ∫ (𝑦)𝛼−1 (𝑠𝑛+1 − 𝑦 − 𝑠𝑛−2) 𝑑𝑦

𝑠𝑛+1−𝑠𝑝+1

𝑠𝑛+1−𝑠𝑝

]

𝑛

𝑝=0

−  

𝐹𝑛−2

2ℎ
[− ∫ (𝑦)𝛼−1 (𝑠𝑛+1 − 𝑦 − 𝑠𝑛) 𝑑𝑦

𝑠𝑛+1−𝑠𝑝+1

𝑠𝑛+1−𝑠𝑝

]},  

=
𝐹𝑛

2ℎ
[−

3ℎ

𝛼
[(𝑠𝑛+1 − 𝑠𝑛+1)𝛼 − (𝑠𝑛+1 − 𝑠0)𝛼] + 

1

𝛼 + 1
[(𝑠𝑛+1 − 𝑠𝑛+1)𝛼+1 − (𝑠𝑛+1 − 𝑠0)𝛼+1]] −  

𝐹𝑛−2

2ℎ
[−

ℎ

𝛼
[(𝑠𝑛+1 − 𝑠𝑛+1)𝛼 − (𝑠𝑛+1 − 𝑠0)𝛼] + (15) 
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1

𝛼 + 1
[(𝑠𝑛+1 − 𝑠𝑛+1)𝛼+1 − (𝑠𝑛+1 − 𝑠0)𝛼+1]], 

=
𝐹𝑛

2ℎ
[ℎ(ℎ𝛼) (

3(𝑛 + 1)𝛼

𝛼
−

(𝑛 + 1)𝛼+1

𝛼 + 1
)] 

−
𝐹𝑛−2

2ℎ
[ℎ(ℎ𝛼) (

(𝑛 + 1)𝛼

𝛼
−

(𝑛 + 1)𝛼+1

𝛼 + 1
)], 

 

= ℎ𝛼 [(
3(𝑛 + 1)𝛼

2𝛼
−

(𝑛 + 1)𝛼+1

2(𝛼 + 1)
) 𝐹𝑛 − (

(𝑛 + 1)𝛼

2𝛼
−

(𝑛 + 1)𝛼+1

2(𝛼 + 1)
) 𝐹𝑛−2]. (16) 

 

Using the above same steps, we evaluate the second fractional integral. Thus, we obtain: 

 

∫ [(𝑠𝑛 − 𝑠)𝛼−1𝑓(𝜏, 𝑦(𝜏))] 𝑑𝜏
𝑠𝑛

0

  

= ∑ ∫ (𝑠𝑛 − 𝑠)𝛼−1 (
𝑠 − 𝑠𝑛−2

𝑠𝑛 − 𝑠𝑛−2
𝐹𝑛 +

𝑠 − 𝑠𝑛

𝑠𝑛−2 − 𝑠𝑛
𝐹𝑛−2)  𝑑𝑠,

𝑠𝑝+1

𝑠𝑝

𝑛−1

𝑝=0

 (17) 

= ∑ [
𝐹𝑛

𝑠𝑛 − 𝑠𝑛−2
∫ (𝑠𝑛 − 𝑠)𝛼−1 (𝑠 − 𝑠𝑛−2) 𝑑𝑠

𝑠𝑝+1

𝑠𝑝

𝑛−1

𝑝=0

+  

𝐹𝑛−2

𝑠𝑛−2 − 𝑠𝑛
∫ (𝑠𝑛 − 𝑠)𝛼−1 (𝑠 − 𝑠𝑛) 𝑑𝑠

𝑠𝑝+1

𝑠𝑝

],  

= ∑ [
𝐹𝑛

2ℎ
∫ (𝑠𝑛 − 𝑠)𝛼−1 (𝑠 − 𝑠𝑛−2) 𝑑𝑠

𝑠𝑝+1

𝑠𝑝

𝑛−1

𝑝=0

− 

(18) 

 
𝐹𝑛−2

2ℎ
∫ (𝑠𝑛 − 𝑠)𝛼−1 (𝑠 − 𝑠𝑛) 𝑑𝑠

𝑠𝑝+1

𝑠𝑝

]. 

 

Next, by considering the changes 𝑦 = 𝑠𝑛 − 𝑠, 𝑑𝑦 = −𝑑𝑠, we will obtain: 

 

∑ [
𝐹𝑛

2ℎ
∫ (𝑦)𝛼−1 (𝑠𝑛 − 𝑦 − 𝑠𝑛−2) (−𝑑𝑦)

𝑠𝑛−𝑠𝑝+1

𝑠𝑛−𝑠𝑝

𝑛−1

𝑝=0

−   

𝐹𝑛−2

2ℎ
∫ (𝑦)𝛼−1 (𝑠𝑛 − 𝑦 − 𝑠𝑛) (−𝑑𝑦)

𝑠𝑛−𝑠𝑝+1

𝑠𝑛−𝑠𝑝

],  

= ∑ {
𝐹𝑛

2ℎ
[− ∫ (𝑦)𝛼−1 (𝑠𝑛 − 𝑦 − 𝑠𝑛−2) 𝑑𝑦

𝑠𝑛−𝑠𝑝+1

𝑠𝑛−𝑠𝑝

]

𝑛−1

𝑝=0

−  

𝐹𝑛−2

2ℎ
[− ∫ (𝑦)𝛼−1 (𝑠𝑛 − 𝑦 − 𝑠𝑛) 𝑑𝑦

𝑠𝑛−𝑠𝑝+1

𝑠𝑛−𝑠𝑝

]},  

=
𝐹𝑛

2ℎ
[−

2ℎ

𝛼
[(𝑠𝑛 − 𝑠𝑛)𝛼 − (𝑠𝑛 − 𝑠0)𝛼] + 

1

𝛼 + 1
[(𝑠𝑛 − 𝑠𝑛)𝛼+1 − (𝑠𝑛 − 𝑠0)𝛼+1]] −  
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𝐹𝑛−2

2ℎ
[

1

𝛼 + 1
[(𝑠𝑛 − 𝑠𝑛)𝛼+1 − (𝑠𝑛 − 𝑠0)𝛼+1]],  

=
𝐹𝑛

2ℎ
[ℎ(ℎ𝛼) (

2(𝑛)𝛼

𝛼
−

(𝑛)𝛼+1

𝛼 + 1
)] + 

𝐹𝑛−2

2ℎ
[ℎ(ℎ𝛼) (

(𝑛)𝛼+1

𝛼 + 1
)],  

= ℎ𝛼 [(
2(𝑛)𝛼

2𝛼
−

(𝑛)𝛼+1

2(𝛼 + 1)
) 𝐹𝑛 + (

(𝑛)𝛼+1

2(𝛼 + 1)
) 𝐹𝑛−2]. (19) 

 

The numerical formula for FEM can be obtained when Eq. (16) and Eq. (19) will be 

substituted into Eq. (10). Therefore, we have: 

 

𝑦(𝑠𝑛+1) = 𝑦(𝑠𝑛) +
ℎ𝛼

𝛤(𝛼)
{[(

3(𝑛 + 1)𝛼

2𝛼
−

(𝑛 + 1)𝛼+1

2(𝛼 + 1)
) 𝐹𝑛 −  

(
(𝑛 + 1)𝛼

2𝛼
−

(𝑛 + 1)𝛼+1

2(𝛼 + 1)
) 𝐹𝑛−2] −  

[(
2(𝑛)𝛼

2𝛼
−

(𝑛)𝛼+1

2(𝛼 + 1)
) 𝐹𝑛 +  (

(𝑛)𝛼+1

2(𝛼 + 1)
) 𝐹𝑛−2]}, 

 

 

𝑦(𝑠𝑛+1) = 𝑦(𝑠𝑛) +
ℎ𝛼

𝛤(𝛼)
[(

3(𝑛 + 1)𝛼 − 2(𝑛)𝛼

2𝛼
+  

(𝑛)𝛼+1 − (𝑛 + 1)𝛼+1

2(𝛼 + 1)
) 𝐹𝑛 + 

(
−(𝑛 + 1)𝛼

2𝛼
+

(𝑛 + 1)𝛼+1 − (𝑛)𝛼+1

2(𝛼 + 1)
) 𝐹𝑛−2]. 

(20) 

 

Thus, the developed numerical scheme known as FEM is shown in Eq. (20). 

3. Analysis of the Method  

3.1.  Order of the developed method  

Definition 1. (Galeone & Garrappa 2006). The fractional linear multistep method (FLMM) can 

be written in the form of: 

 

∑ 𝛼𝑗𝑦𝑛−𝑗 = ℎ𝛼 ∑ 𝛽𝑗𝑓(𝑠𝑛−𝑗, 𝑦𝑛−𝑗).

𝑛

𝑗=0

𝑛

𝑗=0

 (21) 

 

where 𝛼𝑗 and 𝛽𝑗 are coefficients of real parameters and 𝛼 denotes the fractional order. 

 

Definition 2. (Lambert 1973). The order of the developed method has order w, if 𝐶0 = 𝐶1 =
⋯ = 𝐶𝑤 = 0 and 𝐶𝑤+1 ≠ 0 is the error constant. The formula is given as: 

 

𝐶𝑤 = ∑ [
𝑗𝑤𝛼𝑗

𝑤!
−

𝑗𝑤−1𝛽𝑗

(𝑤 − 1)!
] ,      𝑤 = 0,1,2, …

𝑘

𝑗=0

 (22) 

 

where 𝛼  and 𝛽  are the coefficients from the developed method, and k is the order of the 

developed method. 
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 The first step to calculate the order for FEM in Eq. (20) is to determine 𝛼𝑗 and 𝛽𝑗 using Eq. 

(20) and Eq. (21). Thus, we get: 

 

𝛼0 = 0, 𝛽0 =
1

Γ(𝛼)
 (

−(𝑛 + 1)𝛼

2𝛼
+  

(𝑛 + 1)𝛼+1 − (𝑛)𝛼+1

2(𝛼 + 1)
) , 

(23) 
𝛼1 = 0, 𝛽1 = 0, 

𝛼2 = −1, 𝛽2 =
1

Γ(𝛼)
 (

3(𝑛 + 1)𝛼 − 2(𝑛)𝛼

2𝛼
+  

(𝑛)𝛼+1 − (𝑛 + 1)𝛼+1

2(𝛼 + 1)
), 

𝛼3 = 0, 𝛽3 = 0. 

 

Next, substitute Eq. (23) into Eq. (22) will yield: 

 

𝐶0 = ∑ 𝛼𝑗

𝑘

𝑗=0

= 0, 

(24) 

𝐶1 = ∑(𝑗𝛼𝑗 − 𝛽𝑗)

𝑘

𝑗=0

= 0, 

𝐶2 = ∑ (
𝑗2𝛼𝑗

2!
− 𝑗𝛽𝑗)

𝑘

𝑗=0

= 0, 

𝐶3 = ∑ (
𝑗3𝛼𝑗

3!
−

𝑗2𝛼𝑗

2!
)

𝑘

𝑗=0

=
2

3
. 

 

Thus, the developed method which is FEM is of order 2 and the error constant is 
2

3
. 

3.2.  Convergence analysis  

Theorem 1. Let 𝛾1,  𝛾2, … , 𝛾𝑝 are the roots for the characteristic’s equation,  

 
𝑎 ≤ 𝑡 ≤ 𝑏, −∞ < 𝑦 < ∞, (25) 

 

such that 𝑎 and 𝑏 are finite. Suppose that there exists a constant 𝐿 such that, for every 𝑠, 𝑦, 𝑦∗, 
the coordinates 𝑠, 𝑦, 𝑦∗ and (𝑠, 𝑦∗) are both in 𝑅 where, 

 
|𝑓(𝑠, 𝑦) − 𝑓(𝑠, 𝑦∗)| ≤ 𝐿|𝑦 − 𝑦∗|. (26) 

 

Theorem 2. (Biala & Jator, 2015a; Diethelm, 2010; Li & Tao, 2009). A linear multistep method 

is said to be convergent if, for all initial values problems subject to the hypothesis of Theorem 

1 as 𝑠 ∈ [𝑎, 𝑏] and 0 < 𝛼 < 1, we have that, 

 

|𝑦 − 𝑦∗| ≤ 𝐾 ⋅ 𝑠𝛼−1ℎ𝑝, (27) 

 

where K is a constant depending only on 𝛼 and 𝑝 as 𝑝 ∈ (0,1) and, 

 

𝑙𝑖𝑚
ℎ→0

𝑦𝑛 = 𝑦∗(𝑠𝑛). (28) 
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The first step is to recall the proposed method based on Eq. (20) and let:  

   

𝑃 =
3(𝑛 + 1)𝛼 − 2(𝑛)𝛼

2𝛼
+

(𝑛)𝛼+1 − (𝑛 + 1)𝛼+1

2(𝛼 + 1)
, 

(29) 

𝑄 =
−(𝑛 + 1)𝛼

2𝛼
+

(𝑛 + 1)𝛼+1 − (𝑛)𝛼+1

2(𝛼 + 1)
. 

 

Next, substitute Eq. (29) into Eq. (20) will yield: 

 

(1) The exact form of the system is given by: 

 

𝑦∗(𝑠𝑛+1) − 𝑦∗(𝑠𝑛) =
ℎ𝛼

𝛤(𝛼)
(𝑃)𝐹𝑛

∗ +
ℎ𝛼

𝛤(𝛼)
(𝑄)𝐹𝑛−2

∗ +
2

3
ℎ3𝑠∗(3)(𝜀). (30) 

 

(2) The approximate form of the system is given by: 

 

𝑦(𝑠𝑛+1) − 𝑦(𝑠𝑛) =
ℎ𝛼

𝛤(𝛼)
(𝑃)𝐹𝑛 +

ℎ𝛼

𝛤(𝛼)
(𝑄)𝐹𝑛−2. (31) 

 

Subtracting Eq. (31) and Eq. (30) will get: 

 

𝑦(𝑠𝑛+1) − 𝑦∗(𝑠𝑛+1) = 𝑦(𝑠𝑛) − 𝑦∗(𝑠𝑛) +
ℎ𝛼

𝛤(𝛼)
(𝑃)(𝐹𝑛 − 𝐹𝑛

∗)  

+
ℎ𝛼

Γ(𝛼)
(𝑄)(𝐹𝑛−2 − 𝐹𝑛−2

∗ ) +
2

3
ℎ3𝑦∗(3)(𝜀),  

𝑦(𝑠𝑛+1) − 𝑦∗(𝑠𝑛+1) = 𝑦(𝑠𝑛) − 𝑦∗(𝑠𝑛) +
ℎ𝛼

Γ(𝛼)
(𝑃)[𝑓(𝑠𝑛, 𝑦𝑛) − 𝑓(𝑠𝑛

∗ , 𝑦𝑛
∗)]  

+
ℎ𝛼

Γ(𝛼)
(𝑄)[𝑓(𝑠𝑛−2, 𝑦𝑛−2) − 𝑓(𝑠𝑛−2

∗ , 𝑦𝑛−2
∗ )] (32) 

+
2

3
ℎ3𝑦∗(3)(𝜀).  

 

Let: 

 
|𝑑𝑛+1| = |𝑦𝑛+1 − 𝑦𝑛+1

∗ |, 
(33) |𝑑𝑛| = |𝑦𝑛 − 𝑦𝑛

∗|, 
|𝑑𝑛−2| = |𝑦𝑛−2 − 𝑦𝑛−2

∗ |. 
 

Then, we use the assumption in Eq. (32) and Theorem 1 above by applying the Lipschitz 

condition. Thus, we have: 

 

|𝑑𝑛+1| ≤ (1 +
ℎ𝛼𝑃

𝛤(𝛼)
) |𝑑𝑛| +

ℎ𝛼𝑄

𝛤(𝛼)
|𝑑𝑛−2| +

2

3
ℎ3𝑦∗(3)(𝜀). (34) 

 

Rewriting Eq. (34) based on Theorem 2 above will yield: 

 

|𝑑𝑛+1| ≤ (1 + 𝐾ℎ𝛼)|𝑑𝑛| + 𝐾ℎ𝛼|𝑑𝑛−2| +
2

3
ℎ3𝑦∗(3)(𝜀). (35) 
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From the above analysis, we observe that as ℎ is sufficiently small or ℎ → 0 and the initial 

value tends to 0, it is proven that |𝑑𝑛+1| ≤ |𝑑𝑛|; thus, we will get |𝑦𝑛+1| = |𝑦𝑛+1
∗ | and |𝑦𝑛| =

|𝑦𝑛
∗|. In a nutshell, Theorem 4 is satisfied and hence, the proposed method, FEM, is proved to 

converge. 

3.3.  Stability of the method 

Definition 3. Let 𝛾1,  𝛾2, … , 𝛾𝑝 are the roots for the characteristic’s equation,  

 

𝑃(𝛾) = 𝛾𝑝 − 𝑎𝑝−1𝛾𝑝−1 − ⋯ − 𝑎𝑝−1𝛾 − 𝑎0, (36) 

 

for the given 𝑝-step multistep method, 

 

𝑦𝑛+1 = 𝑎𝑝−1𝑦𝑛 + 𝑎𝑝−2𝑦𝑛−1 + ⋯ + 𝑎0𝑦𝑛+1−𝑝

+ ℎ[𝑏𝑝𝑓(𝑠𝑛+1, 𝑦𝑛+1) + 𝑏𝑝−1𝑓(𝑠𝑛, 𝑦𝑛) + ⋯

+ 𝑏0𝑓(𝑠𝑛+1−𝑝, 𝑦𝑛+1−𝑝)]. 

(37) 

 

If all the roots have value 1 are simple roots, then the root condition of the difference 

equation is said to be satisfied. Moreover, the methods are strongly stable if the methods have 

the only root 𝛾 = 1 and satisfy the root condition.  

The first step is recalling the developed method in Eq. (20). Then, the equation for the 

general 2-step multistep method based on Eq. (37) is: 

 

𝑦𝑛+1 = 𝑎1𝑦𝑛 + 𝑎0𝑦𝑛−1

+ ℎ[𝑏2𝑓(𝑠𝑛+1, 𝑦𝑛+1) +𝑏1𝑓(𝑠𝑛, 𝑦𝑛) + 𝑏0𝑓(𝑠𝑛−1, 𝑦𝑛−1)]. 
(38) 

 

Next, the general characteristics equation for 𝑚 = 2 based on Eq. (36) is: 

 

𝑃(𝛾) = 𝛾2 − 𝑎1𝛾1 − 𝑎0. (39) 

 

Then, comparing Eq. (20) and Eq. (39), we get: 

 

𝑎1 = 1, 𝑎0 = 0. (40) 

 

Substituting Eq. (40) into Eq. (39), we get the characteristics polynomial of the developed 

method as: 

 

𝑃(𝛾) = 𝛾2 − 𝛾 = 0, 
(41) 𝛾 (𝛾 − 1) = 0, 

𝛾 = 0,        𝛾 = 1. 

 

The proposed method is said to be strongly stable as the above characteristic’s polynomial 

satisfies the root condition. 
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4. Implementation  

4.1.  Algorithm of the method  

The algorithm for the developed method will be included in this section. The algorithm will be 

written in C language. First and foremost, the inputs for this programming are the values of 

lower limits and upper limits, the step size and the value of 𝛼. On the other hand, the output 

values are the values for the approximation of 𝑦. The following is the algorithm for the proposed 

method. 

 

Step 1: Set lower limit, upper limit, 𝛼  = alpha, Γ(𝛼) = gamma and the number of 

iterations, 𝑤 =
𝑢𝑝𝑝𝑒𝑟 𝑙𝑖𝑚𝑖𝑡−𝑙𝑜𝑤𝑒𝑟 𝑙𝑖𝑚𝑖𝑡

ℎ
. 

Step 2: For 𝑛 = 0, the approximation solution of 𝑦1  is calculated using Fractional 

Euler method: 𝑦(𝑠𝑛+1) = 𝑦(𝑠𝑛) +
ℎ𝛼

Γ(𝛼+1)
(𝐹𝑛). 

Step 3: For 𝑛 = 1, 2, 3, … , 𝑤 − 1 , calculate the approximation value of 

𝑦2, 𝑦3, … , 𝑦𝑤−1 by iterating the procedure of steps 4 – 6 until 𝑦𝑤−1 is achieved. 

Step 4: Set 𝑠𝑛+1 = 𝑠𝑛 + ℎ. 

Step 5: Next, find the approximation value of 𝑦𝑛+1 by using the proposed method. 

Step 6: Find the absolute error.  

Note that 𝑒𝑟𝑟𝑜𝑟 = |𝑦𝑛+1 − 𝑌𝑛+1| where 𝑦𝑛+1  is the approximation solution 

and 𝑌𝑛+1 is the exact solution. 

Step 7: End. 

5. Numerical Examples and Discussion  

The performance of the developed method will be validated by four numerical examples which 

consist of different types of FDE problem. Problem 1 and Problem 2 are nonlinear FDE, which 

have an exact solution when 𝛼 = 1.0. Problem 3 is a fractional Riccati differential equations 

while Example 4 is FDE with variable order of 𝛼. 

 

Problem 1. Consider a problem of nonlinear FDE (Al-Rabtah et al. 2012). 

 

𝐷𝛼𝑦(𝑠) = (1 − 𝑦(𝑠))4,          𝑦(0) = 0.  

 

Exact solution is 𝑦(𝑠) =
1+3𝑠−(1+6𝑠+9𝑠2)

1
3

(1+3𝑠)
 as 𝛼 = 1.0. 

 

Problem 2. Consider a problem of nonlinear FDE (Lydia et al. 2021). 

 

𝐷𝛼𝑦(𝑠) = 𝑦2(𝑠) + 1,          𝑦(0) = 0.  

 

Exact solution is 𝑦(𝑠) = tan(𝑠) for 𝛼 = 1.0. 

 

Problem 3. Consider the fractional Riccati differential equations as an application problem 

(Odibat & Momani 2008; Merden 2012). 

 

𝐷𝛼𝑦(𝑠) = −𝑦2(𝑠) + 1,          𝑦(0) = 0.  
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Exact solution is 𝑦(𝑠) =
𝑒2𝑠−1

𝑒2𝑠+1
 for 𝛼 = 1.0. 

 

Problem 4. Consider a problem of nonlinear FDE (Bonab & Javidi 2020). 

 

𝐷𝛼𝑦(𝑠) =
𝛤(2𝛼 + 1)

𝛤(𝛼 + 1)
𝑠𝛼 −

2

𝛤(3 − 𝛼)
𝑠2−𝛼 + (𝑠2𝛼 − 𝑠2)4 − 𝑦4(𝑠),  

𝑦(0) = 0. 

 

 

Exact solution is 𝑦(𝑠) = 𝑠2𝛼 − 𝑠2.    

 

The notations used in the tables are listed below. 

  

 h    Step size 

 FEM    Fractional explicit method of order 2 proposed in this research 

 TSLAB   Two-step Laplace Adam-Bashforth method order 2  

                             (Gnitchogna &  Atangana 2017) 

 MAXE    Maximum error 

 AVGE    Average error 

 

Tables 1 - 3 represent the numerical solutions by measuring the absolute error at each point 

when 𝛼 = 1.00 with different step size, ℎ using the developed method FEM and the existing 

method two-step Laplace Adam-Bashforth (TSLAB) to solve Problems 1 – 3 respectively. The 

absolute errors for both methods are comparable. Figures 1 - 3 present the behaviour of 

approximate solutions of FEM at different values of step size, ℎ. As we can observed from the 

three tables, absolute error is getting smaller as the step size, ℎ decreases. It implies that when 

the step size, ℎ is smaller, the approximate solutions converged as it approaches to the exact 

solutions. Besides, as ℎ decreases, the average error and maximum error are getting smaller. 

Therefore, this indicates that FEM is performing well for solving the nonlinear FDEs compared 

to the exact solution when 𝛼 = 1.00. 

Table 1: Numerical solutions for Problem 1 when 𝛼 = 1.0 at different step sizes, ℎ 

S Exact 

Absolute error at  

ℎ = 0.1 

Absolute error at 

 ℎ = 0.01 

Absolute error at 

 ℎ = 0.001 

FEM TSLAB FEM TSLAB FEM TSLAB 

0.0 0.00000 0.0 × 100 0.0 × 100 0.0 × 100 0.0 × 100 0.0 × 100 0.0 × 100 

0.1 0.08374 1.6 × 10−2 1.6 × 10−2 1.9 × 10−4 8.2 × 10−5 1.8 × 10−6 7.8 × 10−7 

0.2 0.14501 2.1 × 10−2 3.4 × 10−3 9.7 × 10−5 3.1 × 10−5 9.0 × 10−7 2.9 × 10−7 

0.3 0.19261 8.6 × 10−3 1.9 × 10−3 4.9 × 10−5 7.8 × 10−6 4.5 × 10−7 6.8 × 10−8 

0.4 0.23112 4.6 × 10−3 2.3 × 10−4 2.4 × 10−5 3.6 × 10−6 2.1 × 10−7 4.2 × 10−8 

0.5 0.26319 3.0 × 10−3 5.3 × 10−4 1.0 × 10−5 9.5 × 10−6 8.1 × 10−8 9.8 × 10−8 

0.6 0.29051 1.8 × 10−3 9.6 × 10−4 1.7 × 10−6 1.2 × 10−5 1.7 × 10−9 1.3 × 10−7 

0.7 0.31418 9.4 × 10−4 1.2 × 10−3 3.4 × 10−6 1.4 × 10−5 4.6 × 10−8 1.4 × 10−7 

0.8 0.33497 4.0 × 10−4 1.3 × 10−3 6.6 × 10−6 1.4 × 10−5 7.6 × 10−8 1.5 × 10−7 

0.9 0.35345 3.5 × 10−5 1.4 × 10−3 8.6 × 10−6 1.5 × 10−5 9.4 × 10−8 1.5 × 10−7 

1.0 0.37004 2.1 × 10−4 1.4 × 10−3 9.8 × 10−6 1.4 × 10−5 1.0 × 10−7 1.4 × 10−7 

MAXE - 2.1 × 10−2 1.6 × 10−2 3.7 × 10−4 2.0 × 10−4 4.0 × 10−6 2.0 × 10−6 

AVGE - 5.6 × 10−3 2.9 × 10−3 5.5 × 10−5 2.8 × 10−5 5.4 × 10−7 2.7 × 10−7 
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Figure 1: Behaviour of approximate solutions, 𝑦(𝑠) and point, 𝑠 for Problem 1 using proposed method 

Table 2: Numerical solutions for Problem 2 when 𝛼 = 1.0 at different step sizes, ℎ 

S Exact 

Absolute error at  

ℎ = 0.1 

Absolute error at 

 ℎ = 0.01 

Absolute error at 

 ℎ = 0.001 

FEM TSLAB FEM TSLAB FEM TSLAB 

0.0 0.00000 0.0 × 100 0.0 × 100 0.0 × 100 0.0 × 100 0.0 × 100 0.0 × 100 

0.1 0.10033 3.3 × 10−4 3.3 × 10−4 1.3 × 10−5 7.1 × 10−6 1.3 × 10−7 8.4 × 10−8 

0.2 0.20271 1.7 × 10−3 1.2 × 10−3 2.8 × 10−5 1.7 × 10−5 2.9 × 10−7 1.8 × 10−7 

0.3 0.30934 3.3 × 10−3 2.2 × 10−3 4.6 × 10−5 2.9 × 10−5 4.8 × 10−7 3.0 × 10−7 

0.4 0.42279 5.3 × 10−3 3.6 × 10−3 7.1 × 10−5 4.5 × 10−5 7.3 × 10−7 4.6 × 10−7 

0.5 0.54630 8.0 × 10−3 5.5 × 10−3 1.1 × 10−4 6.8 × 10−5 1.1 × 10−6 6.9 × 10−7 

0.6 0.68414 1.2 × 10−2 8.2 × 10−3 1.6 × 10−4 1.0 × 10−4 1.7 × 10−6 1.1 × 10−6 

0.7 0.84229 1.8 × 10−2 1.2 × 10−2 2.5 × 10−4 1.6 × 10−4 2.6 × 10−6 1.6 × 10−6 

0.8 1.02960 2.8 × 10−2 1.9 × 10−2 3.9 × 10−4 2.5 × 10−4 4.1 × 10−6 2.6 × 10−6 

0.9 1.26020 4.4 × 10−2 3.1 × 10−2 6.6 × 10−4 4.2 × 10−4 6.8 × 10−6 4.3 × 10−6 

1.0 1.55740 7.3 × 10−2 5.3 × 10−2 1.2 × 10−3 7.4 × 10−4 1.2 × 10−5 7.6 × 10−6 

MAXE - 7.3 × 10−2 5.3 × 10−2 1.2 × 10−3 7.4 × 10−4 1.2 × 10−5 7.6 × 10−6 

AVGE - 1.9 × 10−2 1.4 × 10−2 2.3 × 10−4 1.5 × 10−4 2.3 × 10−6 1.5 × 10−6 

 

 

 

 

 

 

 

 

 

 
 

 

 

 
 

Figure 2: Behaviour of approximate solutions, 𝑦(𝑠) and point, 𝑠 for Problem 2 using proposed method 
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Table 3: Numerical solutions for Problem 3 when 𝛼 = 1.0 at different step sizes, ℎ 

S Exact 

Absolute error at  

ℎ = 0.1 

Absolute error at 

 ℎ = 0.01 

Absolute error at 

 ℎ = 0.001 

FEM TSLAB FEM TSLAB FEM TSLAB 

0.0 0.00000 0.0 × 100 0.0 × 100 0.0 × 100 0.0 × 100 0.0 × 100 0.0 × 100 

0.1 0.099668 3.3 × 10−4 3.3 × 10−4 1.2 × 10−5 7.7 × 10−6 1.3 × 10−7 8.1 × 10−8 

0.2 0.19738 1.6 × 10−3 1.1 × 10−3 2.4 × 10−5 1.5 × 10−5 2.5 × 10−7 1.5 × 10−7 

0.3 0.29131 2.7 × 10−3 1.8 × 10−3 3.3 × 10−5 2.1 × 10−5 3.3 × 10−7 2.1 × 10−7 

0.4 0.37995 3.5 × 10−3 2.2 × 10−3 3.9 × 10−5 2.4 × 10−5 3.9 × 10−7 2.4 × 10−7 

0.5 0.46212 4.0 × 10−3 2.4 × 10−3 4.1 × 10−5 2.5 × 10−5 4.1 × 10−7 2.5 × 10−7 

0.6 0.53705 4.1 × 10−3 2.4 × 10−3 3.9 × 10−5 2.4 × 10−5 3.9 × 10−7 2.4 × 10−7 

0.7 0.60437 3.8 × 10−3 2.3 × 10−3 3.5 × 10−5 2.2 × 10−5 3.5 × 10−7 2.2 × 10−7 

0.8 0.66404 3.3 × 10−3 1.9 × 10−3 3.0 × 10−5 1.8 × 10−5 2.9 × 10−7 1.8 × 10−7 

0.9 0.71630 2.7 × 10−3 1.6 × 10−3 2.3 × 10−5 1.4 × 10−5 2.3 × 10−7 1.4 × 10−7 

1.0 0.76159 2.1 × 10−3 1.1 × 10−3 1.6 × 10−5 1.0 × 10−5 1.6 × 10−7 1.0 × 10−7 

MAXE - 4.1 × 10−3 2.4 × 10−3 4.1 × 10−5 2.5 × 10−5 4.1 × 10−7 2.5 × 10−7 

AVGE - 2.8 × 10−3 1.2 × 10−3 2.9 × 10−5 1.8 × 10−5 2.9 × 10−7 1.8 × 10−7 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 3: Behaviour of approximate solution, 𝑦(𝑠) and point, 𝑠 for Example 3 using proposed method 

 
Table 4 presents the numerical results for solving Example 4. The absolute error at each 

point for different values of 𝛼, where 𝛼 = 0.95, 0.90 and 0.80 is obtained when solving using 

the proposed method FEM and TSLAB at ℎ = 0.01.  The numerical result of FEM is 

comparable compared to TSLAB. As we can observed from Table 4, the absolute errors, 

average error, and maximum error are getting smaller when 𝛼 is approaching to 1.00. Hence, 

the proposed method, FEM performed well in solving the problem when 𝛼 is closer to 1.00. 

6. Conclusion  

In this article, FEM of order two is introduced where the step size 2ℎ are considered in the 

derivation technique. According to the numerical results obtained, FEM is proved to be able to 

achieve comparable results compared to the existing methods, TSLAB, in each numerical 

example. In addition, the numerical results also validate the convergence analysis where the 

approximate solutions indeed converge as the step size, ℎ  is getting smaller. Besides, the 

numerical result also shows that better accuracy has yielded when the order of FDE, 𝛼 increases 

and approaches to 1.00. Thus, the proposed method, FEM are reliable and appropriate to act as 

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 s

y(s)

h=0.1 h=0.01 h=0.001 Exact



 

Yip Lian Yiung & Zanariah Abdul Majid  

54 

an alternative method to be implemented in solving different kinds of FDEs. The limitation of 

this proposed method is that it’s not able to solve the problem with 𝛼 that is far from 1.00. The 

future scope of this current study can be extended to increase the order of the method or solve 

fractional differential equations with delay. 

Table 4: Numerical results for Example 4 at ℎ = 0.01 at different 𝛼 

S 

Absolute error at  

𝛼 = 0.95 

Absolute error at  

𝛼 = 0.90 

Absolute error at  

𝛼 = 0.80 

FEM TSLAB FEM TSLAB FEM TSLAB 

0.0 0.0 × 100 0.0 × 100 0.0 × 100 0.0 × 100 0.0 × 100 0.0 × 100 

0.1 56 × 10−5 3.3 × 10−5 1.4 × 10−4 1.0 × 10−4 4.2 × 10−4 4.0 × 10−4 

0.2 8.4 × 10−5 7.1 × 10−5 2.8 × 10−4 2.7 × 10−4 1.0 × 10−3 1.1 × 10−3 

0.3 1.5 × 10−4 1.5 × 10−4 5.6 × 10−4 5.8 × 10−4 2.2 × 10−3 2.4 × 10−3 

0.4 2.6 × 10−4 2.6 × 10−4 9.8 × 10−4 1.0 × 10−3 3.8 × 10−3 4.1 × 10−3 

0.5 3.9 × 10−4 4.0 × 10−4 1.5 × 10−3 1.6 × 10−3 5.8 × 10−3 6.2 × 10−3 

0.6 5.7 × 10−4 5.8 × 10−4 2.2 × 10−3 2.3 × 10−3 8.3 × 10−3 8.8 × 10−3 

0.7 7.7 × 10−4 7.9 × 10−4 3.0 × 10−3 3.1 × 10−3 1.1 × 10−2 1.2 × 10−2 

0.8 1.0 × 10−3 1.0 × 10−3 3.9 × 10−3 4.0 × 10−3 1.4 × 10−2 1.5 × 10−2 

0.9 1.3 × 10−3 1.3 × 10−3 4.9 × 10−3 5.1 × 10−3 1.8 × 10−2 1.9 × 10−2 

1.0 1.6 × 10−3 1.6 × 10−3 6.1 × 10−3 6.3 × 10−3 2.2 × 10−2 2.3 × 10−2 

MAXE 1.6 × 10−3 1.6 × 10−3 1.7 × 10−3 6.1 × 10−3 2.3 × 10−2 2.2 × 10−2 

AVGE 5.5 × 10−4 5.5 × 10−4 5.8 × 10−3 2.1 × 10−3 8.1 × 10−3 7.7 × 10−3 
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