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ABSTRACT  

The main purpose of this study is to compare the performance of midpoint, right, and left 

imputation techniques for log logistic model with covariate and censored data. The maximum 

likelihood estimation method (MLE) is used to check the efficiency of imputation techniques 

by estimating the parameters. The performance of the estimates is evaluated based on their bias, 

standard error (SE), and root mean square error (RMSE) at different sample sizes, censoring 

proportions, and interval widths via a simulation study. Based on the results of the simulation 

study, the right imputation had the best overall performance. Finally, the proposed model is 

fitted to the real breast cancer data. The findings suggest that the log logistic model fits the 

breast cancer data well and the covariate of treatment significantly affects the time to cosmetic 

deterioration of the breast cancer patients. 
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ABSTRAK  

Tujuan utama kajian ini adalah untuk membandingkan prestasi teknik imputasi titik tengah, 

kanan dan kiri bagi model logistik log dengan kovariat dan data tertapis. Kaedah penganggaran 

kebolehjadian maksimum (MLE) digunakan untuk memeriksa efisiensi teknik imputasi dengan 

menganggar parameter. Prestasi anggaran parameter dengan teknik imputasi titik tengah, kanan 

dan kiri dinilai dan dibandingkan pada saiz sampel, kadar penapisan dan lebar selang yang 

berbeza. Berdasarkan hasil kajian simulasi, teknik imputasi kanan mempunyai prestasi 

keseluruhan yang terbaik. Akhirnya, model yang dicadangkan telah dipadan pada data kanser 

payudara sebenar. Hasilnya mencadangkan bahawa model logistik log sesuai dengan data 

kanser payudara dan kovariat rawatan mempengaruhi masa kemerosotan kosmetik pesakit 

kanser payudara secara signifikan. 

Kata kunci: logistic log; teknik imputasi; kovariat; tertapis kanan; tertapis selang  

                       

1. Introduction 

According to Smith and Smith (2001), survival analysis refers to a statistical approach that 

considers the amount of time of an experimental unit in a study. It is a time study between the 

entry of a subject and the observation of the event of interest. It is extensively applied in 

numerous fields such as medical and biological sciences, social and economic sciences, as well 

as in engineering.  

The time to the occurrence of the event of interest is known as survival time, failure time, 

or time-to-event. Survival time, T ≥ 0 measures the duration of an event from a particular time 

origin until the occurrence of the event interest. It can be measured in years, months, weeks, 

days, minutes, or seconds. The survival data is said to be censored if the exact survival times of 
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the subjects are unknown while the observations are classified as uncensored if the set of 

survival times is complete. There are three types of censoring in survival analysis, namely left 

censoring, right censoring, and interval censoring. 

According to Muse et al. (2021), log logistic distribution is a continuous probability 

distribution for a non-negative random variable where its logarithm has a logistic distribution. 

This distribution has a similarity with log normal distribution in terms of their shape but it 

exhibits heavier tails. This characteristic makes the log logistic distribution to be more suitable 

for lifetime data analysis compared with the log normal distribution. Besides, it is very 

appealing because its cumulative distribution function (CDF) can be expressed in closed form 

which makes it particularly useful for analysis of survival data with incomplete information 

such as censoring and truncation. It also has non-monotonic hazard rate which its rate increases 

at first and eventually decreases. Therefore, this property of its hazard function makes it 

appropriate for modelling some sets of survival data in medical studies whose rate increases 

initially and then declines. For instance, the medical studies can be those involving lung cancer, 

breast cancer, and kidney or heart transplant patients, as described by Arasan and Adam (2014). 

Imputation technique is a technique of replacing the missing data with substituted values. In 

survival analysis, it is used to deal with missing event times of censored observations. In this 

study, the imputation techniques are employed to approximate the interval censored data which 

consists of left and right endpoints of the censoring intervals. The three major types of simple 

imputation techniques are midpoint imputation, right imputation, and left imputation. 

Previously, there are some researchers who had done research on the log logistic model with 

covariate, uncensored, right, and interval censored data. Loh et al. (2017) studied the estimation 

procedure and Wald method for the parameters of the log logistic model with doubly interval, 

interval, right censored, and uncensored data. In a recent work conducted by Lai and Arasan 

(2020), the adequacy of the log logistic model with covariate, right, and interval censored data 

was investigated by applying different types of imputation techniques. So, there are only a few 

studies done on the log logistic model and it is essential to further explore this model with 

uncensored, right and interval censored data. In general, we still could not identify the best 

imputation technique for the log logistic model with covariate, uncensored, right, and interval 

censored data. Thus, assessing several imputation techniques to deal with the problem of 

uncensored, right, and interval censored data will be the interest of our study.  

This study aims to incorporate covariate into the log logistic model with uncensored, right, 

and interval censored data and apply maximum likelihood estimation method to obtain its 

parameter estimates. A simulation study was conducted to assess the performance of the 

parameter estimates with the midpoint, right, and left imputation techniques to deal with the 

problem of uncensored, right, and interval censored data at various sample sizes, censoring 

proportions, and interval widths, and identify the best technique based on the values of bias, 

standard error (SE), and root mean square error (RMSE) of parameter estimates. Finally, the 

log logistic regression model was fitted to real data with right and interval censored 

observations with covariate to evaluate the overall performance of the proposed model in real 

life situations.  

2. Methodology 

2.1.  Log logistic regression model  

Let T ≥ 0 be a non-negative random variable denoting the survival time with the probability 

density function (PDF) of log logistic model, 
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In this study, the model is extended to incorporate covariate by letting 𝛼 = 𝑒𝑥𝑝(−𝜇) and 

𝛽 =
1

𝜎
 where 𝜇 = 𝜷′𝑥, 𝑡 denotes the failure time, 𝜲′ = (𝑥0, 𝑥1, … , 𝑥𝑝) is the vector of covariate 

values, 𝑥0 = 1, β
' = (β0, β1, … , βp) is a vector for unknown parameters. Thus, the density 

function now becomes,  
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Assuming we have 𝑛 independent random variable, if 𝑖 = 1,2,… , 𝑛 and 𝜇𝑖 = 𝛽0 + 𝛽1𝑥𝑖 , 

where xi  is single covariate. Let 𝑧𝑖 =
𝑦𝑖−𝛽0−𝛽1𝑥𝑖

𝜎
 where  𝑦𝑖 = 𝑙𝑛(𝑡𝑖)  is the log lifetime for 

𝑖𝑡ℎobservations, then the PDF and survival function of log logistic regression model are as 

follows, 

 

𝑓(𝑧𝑖 , 𝛽, 𝜎, 𝑥𝑖) =
𝑒𝑥𝑝(𝑧𝑖)

𝜎[1+𝑒𝑥𝑝(𝑧𝑖)]
2  , −∞ < 𝑧𝑖 < ∞.           (3) 

 

𝑆(𝑧𝑖, 𝛽, 𝜎, 𝑥𝑖) =
1

[1+𝑒𝑥𝑝(𝑧𝑖)]
, −∞ < 𝑧𝑖 < ∞.          (4) 

 

The failure time, 𝑡𝑖 can be simulated using the inverse transform method which is shown 

as follows, 

 

𝑡𝑖 = (
𝑢𝑖

1−𝑢𝑖
)
𝜎
𝑒𝑥𝑝( 𝛽0 + 𝛽1𝑥𝑖).         (5) 

 

where 𝑢𝑖 is the random number generated from standard uniform distribution. 

2.2.  Maximum likelihood estimation 

A censoring indicator variable needs to be defined to determine if an observation is censored 

or uncensored. Let: 

  

𝑐𝑖 = {
1, if 𝑡𝑖 uncensored or interval censored;

0, if 𝑡𝑖 right censored.
  

 

and let 

 

𝑡𝑖̃ =

{
 
 

 
 
𝑡𝐿𝑖 + 𝑡𝑅𝑖

2
  ,     for midpoint imputation;

𝑡𝑅𝑖              ,     for right imputation;

𝑡𝐿𝑖              ,     for left imputation;

𝑡𝑖               ,     otherwise.
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In this study, midpoint, right, and left imputation techniques will be employed to deal with 

the interval censored data. For the midpoint imputation, its lifetime is approximated by taking 

the midpoint of the censoring interval [𝑡𝐿𝑖 , 𝑡𝑅𝑖] as 
(𝑡𝐿𝑖 ,𝑡𝑅𝑖)

2
. While for the right and left imputation 

methods, the lifetime is imputed by the right limit of censoring interval, 𝑡𝑅𝑖 , and left limit of the 

censoring interval, 𝑡𝐿𝑖 , respectively.  

The likelihood function for the log logistic regression model with the presence of 

uncensored, right, and interval censored lifetime data is given by, 

 

𝐿(𝛽, 𝜎) =∏[𝑓(𝑡𝑖̃)]
𝑐𝑖[𝑆(𝑡𝑖)]

1−𝑐𝑖

𝑛

𝑖=1

 

(6) 

             = ∏ [
𝑒𝑥𝑝(𝑧𝑖̃)

𝜎(1+𝑒𝑥𝑝(𝑧𝑖̃))
2]

𝑛
𝑖=1

𝑐𝑖
([1 + 𝑒𝑥𝑝( 𝑧𝑖)]

−1)1−𝑐𝑖 .  

 

The loglikelihood function is,  

 

𝑙(𝛽, 𝜎) =∑{

𝑛

𝑖=1

𝑐𝑖[𝑧𝑖̃ − 𝑙𝑛( 𝜎) − 2 𝑙𝑛( 1 + 𝑒𝑥𝑝( 𝑧𝑖))] 

(7) 
                              −(1 − 𝑐𝑖) 𝑙𝑛( 1 + 𝑒𝑥𝑝( 𝑧𝑖))}  

 

where 𝑧𝑖 =
𝑙𝑛(𝑡𝑖)−𝛽0−𝛽1𝑥𝑖

𝜎
 and zĩ =

ln(tĩ)-β0-β1xi

σ
. 

Let Ai = exp(zi) [1 + exp(zi)]
-1  and Bi = exp(zĩ) [1 + exp(zĩ)]

-1 where i = 1,2,… , n ,  

𝑧𝑖 =
𝑙𝑛(𝑡𝑖)−𝛽0−𝛽1𝑥𝑖

𝜎
 and 𝑧𝑖̃ =

𝑙𝑛(𝑡𝑖̃)−𝛽0−𝛽1𝑥𝑖

𝜎
. The first derivatives of loglikelihood function with 

respect to the parameters are, 

 
𝜕(𝛽,𝜎)

𝜕𝛽𝑗
= ∑

𝑥𝑖𝑗

𝜎
{𝑐𝑖(2𝐵𝑖 − 1) + (1 − 𝑐𝑖)𝐴𝑖}.

𝑛
𝑖=1         (8) 

 

where j = 0,1 and xi0 = 1. 

 
𝜕(𝛽,𝜎)

𝜕𝜎
= ∑

1

𝜎
{𝑐𝑖𝑧𝑖̃(2𝐵𝑖 − 1) − 𝑐𝑖 + 𝐴𝑖𝑧𝑖(1 − 𝑐𝑖)}.

𝑛
𝑖=1         (9) 

 

where 𝑥𝑖0 = 1. 

Next, Newton-Raphson method will be used to estimate the parameters of the log logistic 

regression model. 

2.3. Fisher information  

Fisher information matrix of the log logistic regression model which is approximated by the 

observed information matrix can be expressed as follows, 

 



 

Comparison of Several Imputation Techniques for Log Logistic Model with Covariate and Interval Censored Data 
  

175 

𝑖(𝛽0, 𝛽1, 𝜎) =

[
 
 
 
 
 

−

−
𝜕2𝑙

𝜕𝛽0
2 −

𝜕2𝑙

𝜕𝛽0𝜕𝛽1
−

𝜕2𝑙

𝜕𝛽0𝜕𝜎

𝜕2𝑙

𝜕𝛽1𝜕𝛽0
−

𝜕2𝑙

𝜕𝛽1
2 −

𝜕2𝑙

𝜕𝛽1𝜕𝜎

−
𝜕2𝑙

𝜕𝜎𝜕𝛽0
−

𝜕2𝑙

𝜕𝜎𝜕𝛽1
−

𝜕2𝑙

𝜕𝜎2 ]
 
 
 
 
 

,      (10) 

 

evaluated at 𝛽̂0, 𝛽̂1, and 𝜎̂. 

2.4. Log rank test  

Log rank test is a commonly used statistical test to assess whether there is a difference in the 

survival experience or survival function between two or more groups. The log rank test statistics 

is given by, 

 

𝜒𝐿𝑅
2 =

[∑ (𝑑1𝑗−𝑒1𝑗)
𝑘
𝑗=1 ]

2

∑ 𝑣1𝑗
𝑘
𝑗=1

 ∼ 𝜒2(1)       (11) 

 

where d1j is the number of failures at tj for group 1, 𝑒1𝑗 =
𝑛1𝑗𝑑𝑗

𝑛𝑗
,  is the expected number of 

failures and 𝑣1𝑗 =
𝑛1𝑗𝑛2𝑗𝑑𝑗(𝑛𝑗−𝑑𝑗)

𝑛𝑗
2(𝑛𝑗−1)

, is variance of the observed number of failures. 

2.5. Wald confidence interval 

Cox and Hinkley (1979) mentioned if 𝜃 is the maximum likelihood estimator for parameter θ 

then 𝜃 is asymptotically normally distributed with mean 𝜃 and covariance matrix I-1(θ)  under 

mild regularity conditions where 𝐼(𝜃)  is the Fisher information matrix, 

 

𝜃 ∼ 𝑁(𝜃, 𝐼−1(𝜃)).        (12) 

 

The 100(1 − 𝛼)% confidence interval for a single parameter 𝜃𝑗 is given by, 

 

𝜃𝑗 ± 𝑧1−𝛼
2
[𝑠. 𝑒̂(𝜃𝑗)].          (13) 

where z1-α
2

 is the 100(1 −
𝛼

2
)
𝑡ℎ

percentile of standard normal distribution and s. ê  is the 

estimated standard error of 𝜃𝑗. Thus, the 100(1 − 𝛼)% confidence interval for β is given as 

follows,  

 

𝛽̂ ± 𝑧1−𝛼
2
 [𝑠. 𝑒̂(𝛽̂)].        (14) 

3. Simulation Study  

3.1.  Simulation of log logistic regression model  

After a covariate, right and interval censored data were included in the log logistic model, a 

simulation study for the log logistic regression model was conducted using R software with 

1000 replications at sample sizes of 20, 50, 80, 100 and the censoring proportions, 0%, 20%, 

25%, 30%, 35%, 40% to identify the best imputation technique. The value set for the three 
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parameters were 𝛽0 = 2.4, 𝛽1 = 1,  and 𝜎 = 0.6 to mimic real data with some adjustments. 

Approximate censoring proportion is denoted by CP, which refers to the combination of right 

and interval censoring proportions for the simulated data. 

Firstly, we generated a sequence of random number ui  from uniform distribution, 𝑢𝑖 ∼
𝑈(0,1) . Second, the covariate, xi was simulated from standard normal distribution. Both 𝑢𝑖 
and xi were used to get survival times, ti of log logistic regression model with inverse transform 

method. Then, censoring times, si were randomly generated from exponential distribution to 

obtain right censored data. The survival times, 𝑡𝑖  will be uncensored if ti ≤ si  and right 

censored if ti > si . Next, a small percentage of the right censored data will be randomly 

selected by using Bernoulli distribution with parameter p and converted into interval censored 

data. Also, the time intervals were set as 4 and 6 months and they were compared. 

The parameter estimates of β0, β1,  and σ  were computed using maximum likelihood 

estimation with the midpoint, right, and left imputation techniques and Newton-Raphson 

procedure. In order to examine the performance of the parameter estimates, their values of bias, 

SE, and RMSE were calculated. The bias of a parameter estimate can be described as the 

difference between the expected value and the true value of the parameter estimate. It can be 

used to measure the accuracy of the estimate. 
 

𝑏𝑖𝑎𝑠(𝜃) = 𝐸(𝜃) − 𝜃.        (15) 

 

SE is defined as an important measure of variability between estimates. It is useful in measuring 

the efficiency of the estimate. 
 

𝑆𝐸(𝜃) = √
∑ 𝜃̂𝑖

2−
(∑ 𝜃̂𝑖)

2

𝑁

𝑁−1
.         (16) 

 

RMSE gives the summary of an estimator’s average error. Since RMSE is the combination 

of both bias and standard error which measure the accuracy and efficiency of estimates, the 

best imputation technique will be chosen based on it. 
 

𝑅𝑀𝑆𝐸 = √𝑏𝑖𝑎𝑠(𝜃)
2
+ 𝑠. 𝑒(𝜃)

2
.        (17) 

 

3.2.  Results and discussion  

The values of bias, SE, and RMSE of 𝛽̂0, 𝛽̂1and 𝜎̂ will be compared at various sample sizes, 

censoring proportions, and imputation methods. The tables and figures of the bias, SE, and 

RMSE for one of the estimates, 𝛽̂0 with the interval width of 4 and 6 are included in this paper, 

namely Table 1-6 and Figure 1-6. For the interval width of 4, the bias values of 𝛽̂0 fluctuate 

with the left imputation method. The bias of 𝛽̂0 increases slightly as the censoring proportions 

increase for the midpoint imputation technique while they gradually increase with the rising 

censoring proportions when the right imputation technique was employed. Next, it can be 

observed that the bias values of 𝛽̂1 and 𝜎̂ using the left imputation method always increase 

when the censoring proportions increase. When the midpoint and right imputation methods are 

used, the bias values of 𝛽̂1 and 𝜎̂ decline gradually with the increasing censoring proportions. 

The SE values of 𝛽̂0, 𝛽̂1,  and 𝜎̂  for the left imputation method always increase as the 

censoring proportions increase when the sample size is fixed whereas they are erratic as the 
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sample size increases. In contrast, the SE values of 𝛽̂0, 𝛽̂1, and 𝜎̂ with both the midpoint and 

right imputation methods decrease slightly as the censoring proportions increase when the 

sample size is fixed. While as the sample size increases, the SE of  𝛽̂0, 𝛽̂1, and 𝜎̂ are smaller for 

the same CP. 

Table 1: Bias of 𝛽̂0 with midpoint, right and left imputation techniques (interval width of 4) 

n Right CP Interval CP CP Midpoint Right Left 

20 0.000 0.000 0.000 0.00749 0.00749 0.00749 

0.200 0.000 0.200 0.07624 0.08405 0.09820 

0.200 0.050 0.250 0.07661 0.09783 0.12806 

0.200 0.100 0.300 0.07835 0.10627 0.13689 

0.200 0.150 0.350 0.07895 0.12647 0.13308 

0.200 0.200 0.400 0.07918 0.13188 0.11939 

50 0.000 0.000 0.000 0.00091 0.00091 0.00091 

0.200 0.000 0.200 0.11857 0.16550 0.11360 

0.200 0.040 0.250 0.12007 0.17676 0.09122 

0.200 0.100 0.300 0.12078 0.18716 0.05112 

0.200 0.140 0.350 0.12151 0.19287 0.02493 

0.200 0.200 0.400 0.12333 0.20945 -0.07054 

80 0.000 0.000 0.000 -0.00318 -0.00318 -0.00318 

0.175 0.025 0.200 0.11385 0.13011 0.13273 

0.175 0.075 0.250 0.11557 0.14467 0.13990 

0.175 0.125 0.300 0.11819 0.16490 0.12562 

0.175 0.175 0.350 0.11918 0.17593 0.10363 

0.175 0.225 0.400 0.12003 0.18427 0.08065 

100 0.000 0.000 0.000 0.00331 0.00331 0.00331 

0.190 0.010 0.200 0.11725 0.13021 0.13499 

0.190 0.060 0.250 0.11910 0.14487 0.14690 

0.190 0.110 0.300 0.12069 0.15929 0.14774 

0.190 0.160 0.350 0.12228 0.17350 0.13498 

0.190 0.210 0.400 0.12490 0.19863 0.06518 

Table 2: SE of 𝛽̂0 with midpoint, right and left imputation techniques (interval width of 4) 

n Right CP Interval CP CP Midpoint Right Left 

20 0.000 0.000 0.000 0.23818 0.23818 0.23818 

0.200 0.000 0.200 0.29554 0.29463 0.34264 

0.200 0.050 0.250 0.29527 0.29286 0.40720 

0.200 0.100 0.300 0.29387 0.29117 0.44829 

0.200 0.150 0.350 0.29308 0.28678 0.57866 

0.200 0.200 0.400 0.29304 0.28565 0.60956 

50 0.000 0.000 0.000 0.14396 0.14396 0.14396 

0.200 0.000 0.200 0.18724 0.18323 0.27655 

0.200 0.040 0.250 0.18719 0.18228 0.30871 

0.200 0.100 0.300 0.18732 0.18184 0.35352 

0.200 0.140 0.350 0.18726 0.18121 0.37756 

0.200 0.200 0.400 0.18673 0.17964 0.46308 

80 0.000 0.000 0.000 0.11557 0.11557 0.11557 

0.175 0.025 0.200 0.14765 0.14613 0.16374 

0.175 0.075 0.250 0.14759 0.14514 0.17841 

0.175 0.125 0.300 0.14724 0.14373 0.21180 

0.175 0.175 0.350 0.14727 0.14283 0.24134 

0.175 0.225 0.400 0.14737 0.14256 0.26321 

100 0.000 0.000 0.000 0.10525 0.10525 0.10525 

0.190 0.010 0.200 0.12682 0.12623 0.13732 

0.190 0.060 0.250 0.12690 0.12565 0.14910 

0.190 0.110 0.300 0.12669 0.12458 0.16433 

0.190 0.160 0.350 0.12644 0.12339 0.18583 

0.190 0.210 0.400 0.12592 0.12142 0.24344 
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Table 3: RMSE of 𝛽̂0 with midpoint, right and left imputation techniques (interval width of 4) 

n Right CP Interval CP CP Midpoint Right Left 

20 0.000 0.000 0.000 0.23829 0.23829 0.23829 

0.200 0.000 0.200 0.30522 0.30639 0.35644 

0.200 0.050 0.250 0.30504 0.30876 0.42687 

0.200 0.100 0.300 0.30413 0.30996 0.46872 

0.200 0.150 0.350 0.30353 0.31343 0.59377 

0.200 0.200 0.400 0.30355 0.31463 0.62114 

50 0.000 0.000 0.000 0.14397 0.14397 0.14397 

0.200 0.000 0.200 0.22163 0.24690 0.29897 

0.200 0.040 0.250 0.22239 0.25391 0.32191 

0.200 0.100 0.300 0.22289 0.26095 0.35720 

0.200 0.140 0.350 0.22323 0.26464 0.37838 

0.200 0.200 0.400 0.22378 0.27594 0.46842 

80 0.000 0.000 0.000 0.11561 0.11561 0.11561 

0.175 0.025 0.200 0.18645 0.19566 0.21077 

0.175 0.075 0.250 0.18745 0.20492 0.22672 

0.175 0.125 0.300 0.18881 0.21875 0.24626 

0.175 0.175 0.350 0.18945 0.22661 0.26265 

0.175 0.225 0.400 0.19007 0.23298 0.27529 

100 0.000 0.000 0.000 0.10530 0.10530 0.10530 

0.190 0.010 0.200 0.17272 0.18135 0.19255 

0.190 0.060 0.250 0.17404 0.19177 0.20931 

0.190 0.110 0.300 0.17497 0.20222 0.22098 

0.190 0.160 0.350 0.17590 0.21290 0.22968 

0.190 0.210 0.400 0.17736 0.23280 0.25202 

 

Table 4: Bias of 𝛽̂0 with midpoint, right and left imputation techniques (interval width of 6) 

n Right CP Interval CP CP Midpoint Right Left 

20 0.000 0.000 0.000 0.00749 0.00749 0.00749 

0.200 0.000 0.200 0.09438 0.10505 0.13283 

0.200 0.050 0.250 0.09705 0.12596 0.17141 

0.200 0.100 0.300 0.09805 0.13389 0.18415 

0.200 0.150 0.350 0.10476 0.17209 0.12165 

0.200 0.200 0.400 0.10557 0.17594 0.11210 

50 0.000 0.000 0.000 0.00091 0.00091 0.00091 

0.220 0.000 0.200 0.14755 0.20573 0.13624 

0.220 0.020 0.250 0.14973 0.21810 0.09629 

0.220 0.080 0.300 0.15253 0.23670 0.00350 

0.220 0.120 0.350 0.15403 0.24473 -0.05166 

0.220 0.180 0.400 0.15887 0.27217 -0.28327 

80 0.000 0.000 0.000 -0.00318 -0.00318 -0.00318 

0.200 0.0125 0.200 0.13614 0.14671 0.15645 

0.200 0.050 0.250 0.13975 0.16809 0.17927 

0.200 0.100 0.300 0.14385 0.19230 0.17343 

0.200 0.138 0.350 0.14790 0.21601 0.11935 

0.200 0.188 0.400 0.14978 0.22808 0.07169 

100 0.000 0.000 0.000 0.00331 0.00331 0.00331 

0.200 0.010 0.200 0.14278 0.15977 0.17554 

0.200 0.050 0.250 0.14576 0.17648 0.19381 

0.200 0.110 0.300 0.14989 0.20063 0.18961 

0.200 0.140 0.350 0.15200 0.21251 0.17158 

0.200 0.200 0.400 0.15724 0.24463 0.04702 
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Table 5: SE of 𝛽̂0 with midpoint, right and left imputation techniques (interval width of 6) 

n Right CP Interval CP CP Midpoint Right Left 

20 0.000 0.000 0.000 0.23818 0.23818 0.23818 

0.200 0.000 0.200 0.30620 0.30514 0.37813 

0.200 0.050 0.250 0.30553 0.30338 0.46905 

0.200 0.100 0.300 0.30564 0.30266 0.50808 

0.200 0.150 0.350 0.30266 0.29634 0.78103 

0.200 0.200 0.400 0.30262 0.29557 0.81457 

50 0.000 0.000 0.000 0.14396 0.14396 0.14396 

0.220 0.000 0.200 0.19282 0.18904 0.33090 

0.220 0.020 0.250 0.19323 0.18846 0.37896 

0.220 0.080 0.300 0.19339 0.18746 0.46956 

0.220 0.120 0.350 0.19279 0.18651 0.52298 

0.220 0.180 0.400 0.19219 0.18444 0.69824 

80 0.000 0.000 0.000 0.11557 0.11557 0.11557 

0.200 0.0125 0.200 0.15432 0.15352 0.16644 

0.200 0.050 0.250 0.15366 0.15163 0.19017 

0.200 0.100 0.300 0.15354 0.15055 0.23578 

0.200 0.138 0.350 0.15271 0.14877 0.30249 

0.200 0.188 0.400 0.15247 0.14797 0.34853 

100 0.000 0.000 0.000 0.10525 0.10525 0.10525 

0.200 0.010 0.200 0.13266 0.13226 0.15189 

0.200 0.050 0.250 0.13232 0.13147 0.16822 

0.200 0.110 0.300 0.13209 0.13015 0.19892 

0.200 0.140 0.350 0.13192 0.12943 0.22331 

0.200 0.200 0.400 0.13120 0.12725 0.31581 

 

 

Table 6: RMSE of 𝛽̂0 with midpoint, right and left imputation techniques (interval width of 6) 

n Right CP Interval CP CP Midpoint Right Left 

20 0.000 0.000 0.000 0.23829 0.23829 0.23829 

0.200 0.000 0.200 0.32041 0.32271 0.40078 

0.200 0.050 0.250 0.32057 0.32849 0.49939 

0.200 0.100 0.300 0.32099 0.33095 0.54043 

0.200 0.150 0.350 0.32028 0.34269 0.79045 

0.200 0.200 0.400 0.32051 0.34397 0.82225 

50 0.000 0.000 0.000 0.14397 0.14397 0.14397 

0.220 0.000 0.200 0.24279 0.27939 0.35785 

0.220 0.020 0.250 0.24445 0.28824 0.39100 

0.220 0.080 0.300 0.24630 0.30194 0.46957 

0.220 0.120 0.350 0.24676 0.30770 0.52553 

0.220 0.180 0.400 0.24935 0.32878 0.75351 

80 0.000 0.000 0.000 0.11561 0.11561 0.11561 

0.200 0.0125 0.200 0.20579 0.21235 0.22843 

0.200 0.050 0.250 0.20771 0.22637 0.26135 

0.200 0.100 0.300 0.21040 0.24422 0.29270 

0.200 0.138 0.350 0.21259 0.26228 0.32518 

0.200 0.188 0.400 0.21373 0.27187 0.35583 

100 0.000 0.000 0.000 0.10530 0.10530 0.10530 

0.200 0.010 0.200 0.19490 0.20740 0.23214 

0.200 0.050 0.250 0.19686 0.22007 0.25663 

0.200 0.110 0.300 0.19978 0.23914 0.27481 

0.200 0.140 0.350 0.20126 0.24882 0.28161 

0.200 0.200 0.400 0.20479 0.27575 0.31930 

 

 

 

 



 

Teea Yuan Xin & Jayanthi Arasan 

180 

From Table 3 and Figure 3, it can be summarized that the RMSE values of 𝛽̂0 with all 

imputation techniques increase slightly as the censoring proportions increase when the sample 

size is fixed, while they decline with the increasing sample sizes for the similar CP. Whereas 

the RMSE values of 𝛽̂1  and 𝜎̂  with the left imputation technique increase with the rising 

censoring proportions when the sample size is fixed, whereas they fluctuate between different 

sample sizes. On the contrary, the RMSE values of 𝛽̂1  and 𝜎̂ using the midpoint and right 

imputation methods decline slightly as the censoring proportions increase when the sample size 

is fixed. In addition, the greater the sample sizes, the smaller the RMSE of 𝛽̂1 and 𝜎̂ with the 

midpoint and right imputation for the same overall censoring proportions. 

Theoretically, the SE and RMSE of a parameter estimate should be increasing when 

censoring proportions are increasing. This is because more censored data cause the estimated 

parameters to deviate more from the actual value which result in higher SE and RMSE. 

However, the simulation study produced rather inconsistent results due to the mixed case 

interval censored data, especially when dealing with the log logistic model which is known to 

produce slightly erratic results. 

According to the findings presented in Table 4-6 and Figure 4-6, the interval width of 6 

yields greater bias, SE, and RMSE values for 𝛽̂0 compared to the interval width of 4. This 

pattern is consistent for both 𝛽̂1  and 𝜎̂  as well. Thus, it can be concluded that the smaller 

interval width works better than the larger interval width with smaller values of bias, SE, and 

RMSE. 

For the simulation study of the log logistic model with covariate, uncensored, right, and 

interval censored data for various sample sizes, censoring proportions, and interval widths, the 

performance of the estimate 𝛽̂0 is the best with the midpoint imputation technique while the 

estimates 𝛽̂1 and 𝜎̂ perform the best when the right imputation technique is employed. Thus, 

the right imputation is identified as the overall preferred method since it works better for most 

parameter estimates and it will be employed in the real data analysis later. 
 

 

 
Figure 1: Line plot of bias of 𝛽̂0 for midpoint, right and left imputation techniques (interval width of 4) 

 

 
Figure 2: Line plot of SE of 𝛽̂0 for midpoint, right and left imputation techniques (interval width of 4) 

 

 
Figure 3: Line plot of RMSE of 𝛽̂0 for midpoint, right and left imputation techniques (interval width of 4) 
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Figure 4: Line plot of bias of 𝛽̂0 for midpoint, right and left imputation techniques (interval width of 6) 

 

 
Figure 5: Line plot of SE of 𝛽̂0 for midpoint, right and left imputation techniques (interval width of 6) 

 

 
Figure 6: Line plot of RMSE of 𝛽̂0 for midpoint, right and left imputation techniques (interval width of 6)        

4. Real Data Analysis 

4.1.  Introduction  

In this research, the proposed log logistic regression model was fitted to breast cancer data. This 

is a real dataset from Finkelstein and Wolfe (1985). 94 individuals from a retrospective study 

who were early breast cancer patients receiving treatment at the Joint Center for Radiation 

Therapy in Boston between 1976 and 1980 are included in this dataset. According to Singh and 

Totawattage (2013), the purpose of having the retrospective study was to compare the time to 

cosmetic deterioration between two groups of breast cancer patients. The first group consisted 

of patients who underwent radiotherapy as their sole treatment (coded as 0), while the second 

group included patients who received primary radiation therapy followed by chemotherapy 

(coded as 1). The type of treatment is the covariate in this dataset. 

Several parameters were employed to assess the deterioration of the cosmetic appearance. 

These parameters included breast edema, breast retraction, telangiectasia, arm edema, and 

overall cosmetic appearance (Beadle et al.1984). The development of moderate or severe breast 

retraction was highly correlated with a fair or poor cosmetic outcome. Thus, the time to 

cosmetic deterioration can also be determined by the time until the presence of breast retraction. 

Out of 94 observations, there are 46 patients treated with radiotherapy only and 48 patients 

had both radiotherapy and chemotherapy. The patients were monitored every 4 to 6 months, 

with each of them having various clinic visit times from one another. The time interval between 

visits is also different from patient to patient because several of the patients missed the 

scheduled visitation during the study period. 

The time to the occurrence of the event of interest in this dataset is the time to cosmetic 

deterioration. There are 38 right censored observations in total where the patients did not 

experience breast retraction at the end of the study period. Another 56 patients experienced 
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breast retraction between the left endpoints, which corresponded to their last clinic visit prior 

to the appearance of breast retraction, and the right endpoints, which indicated the first clinic 

visit where the breast retraction was identified. These observations are classified as interval 

censored data since their exact event time is unknown. 

4.2.  Preliminary analysis  

Table 7 illustrates the descriptive statistics of time to cosmetic deterioration based on treatment 

0 and treatment 1. It is clearly shown that the median time of cosmetic deterioration for the 

treatment of radiotherapy alone is higher than the median time for radiotherapy followed by 

chemotherapy. Therefore, breast cancer patients who received radiotherapy and chemotherapy 

experienced earlier breast deterioration compared to those who received radiotherapy only. 

 

Table 7: Descriptive statistics of time to cosmetic deterioration by treatment 

Treatment n Events Median 0.95LCL 0.95UCL 

0 46 21 44 35 NA 

1 48 35 26 23 35 

 

4.3.  Non-parametric techniques  

Before the parametric log logistic model is fitted to the real dataset, a non-parametric log rank 

test will be carried out first to verify whether the treatment has a significant effect on survival 

time as a covariate in this dataset.  

 

Table 8: Log rank test statistics of treatment 

𝐻0: 𝑆1(𝑡) = 𝑆2(𝑡); 𝐻0: 𝑆1(𝑡) ≠ 𝑆2(𝑡) 

 𝑛1𝑗  𝑑1𝑗  𝑒1𝑗  (𝑑1𝑗 − 𝑒1𝑗)
2

𝑒1𝑗
 
(𝑑1𝑗 − 𝑒1𝑗)

2

𝑣1𝑗
 

treatment = 0 46 21 30.8 3.14 7.78 

treatment = 1 48 35 25.2 3.85 7.78 

Total 94 56 56   

 
𝜒𝐿𝑅
2 = 7.78~χ(1,0.05)

2 , 𝑝 = 0.005 
 

Since chi-square value is 7.78, which is greater than the critical value, 𝜒(1,0.05)
2 = 3.841, 

and p-value is 0.005, which is smaller than the default level of significance, 𝛼 = 0.05 . 

Therefore, we reject the null hypothesis. There is sufficient evidence to conclude that there is 

significant difference between the survival function of the two treatment groups. This non-

parametric test was conducted because it is not based on any parametric distribution and it is 

good to see the comparison of the results between the non-parametric approach and the 

parametric approach. Therefore, we proceed to use the parametric log logistic model to fit the 

breast cancer data. 

4.4.  Parametric techniques  

Figure 7 shows the probability plot for survival time where the right imputation technique was 

used in approximating the interval censored observations in the breast cancer data. The 
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visualisation of a probability plot can be used to check if the log logistic model can fit the data 

well before proceeding to real data analysis. The correlation coefficient for the log logistic 

model is 0.988, which is very high. All the points fall approximately on the straight line or close 

to the line on the log logistic probability plot. This indicated that the log logistic model is 

appropriate to be used in fitting the breast cancer data and it would be a good choice when 

running parametric distribution analysis. 

 

 

 

 

 

 

 

 

 

 

                   

 

 

                       
 

Figure 7: Probability plot of log logistic model 

 

 

 

 

 

 

 

 

 

 

Figure 8: Survival plot by treatment 

 

Figure 8 illustrates that the survival probabilities for breast cancer patients with treatment of 

radiotherapy only and with the combination of radiotherapy and chemotherapy decrease as the 

time increases. Particularly, patients who received radiotherapy alone have greater survival 

rates than those who received radiotherapy and chemotherapy together. 
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Figure 9: Hazard plot by treatment 

 

Figure 9 shows that the hazard rate for breast cancer patients receiving both radiotherapy 

and chemotherapy is higher than the hazard rate for those receiving treatment radiotherapy all 

the time. Thus, it is not recommended that radiotherapy and chemotherapy be given together as 

a treatment for breast cancer patients to minimise their cosmetic deterioration. 

Table 9: Parameter estimation of the log logistic regression model 

 Coefficient SE z p 95% CI 

Lower 

95% CI 

Upper 

Intercept(𝛽̂0) 3.659 0.124 29.42 < 2𝑒−16 3.416 3.902 

Treatment (𝛽̂1) -0.366 0.161 -2.28 0.023 -0.682 -0.050 

Log  

(scale) 

-0.891 0.112 -7.94 2.1𝑒−15   

Scale(𝜎̂) 0.410      

 

Wald hypothesis test is then conducted to check if the treatment has a significant effect on 

survival time. 𝛽1 represents the covariate of treatment in breast cancer data. The null hypothesis 

and alternative hypothesis are given as follows, 

 

𝐻0: 𝛽1 = 0;𝐻0: 𝛽1 ≠ 0 

 
As given by Table 9, Wald test statistic, 𝑧 is -2.28 and 𝑝 -value is 0.0223. At the default 

level of significance, 𝛼 = 0.05, the critical region will be Z ≥ 1.96 and 𝑍 ≤ −1.96. Since 𝑝 -

value is smaller than 𝛼 = 0.05, and Wald test statistic, z is smaller than -1.96, H0 is rejected. 

Therefore, there is sufficient evidence to conclude that β1 is significant and this indicates that 

treatment has significant effect on the time to cosmetic deterioration. The 95% confidence 

interval for 𝛽1 is given by, 
 

𝛽̂1 ± 𝑧1−𝛼
2
 𝑠. 𝑒̂(𝛽̂1) = (−0.68156,−0.05044 )     (18) 

 
𝛽1 = 0 is not included in the confidence interval. This indicates that the 𝛽1 is significant and 

the covariate of treatment has significant effect on the time to cosmetic deterioration. 

Moreover, the median time ratio for treatment can also be obtained. First, the median 

lifetime, tm need to be calculated.  
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𝑡𝑚 =
1

𝑒−𝛽0−𝛽1𝑥
= (𝑒−𝛽0−𝛽1𝑥)

−1
        (19) 

 

𝑇𝑅̂(Treatment = 1, Treatment = 0) = 𝑒𝛽̂1 = 0.6935    (20) 

 
The estimated median lifetime for patients receiving both radiotherapy and chemotherapy is 

0.6935 times of the median lifetime for patients receiving radiotherapy only, indicating that 

patients with the treatment of radiotherapy and chemotherapy have shorter lifetime compared 

to patients with the treatment of radiotherapy alone.  

The 95%confidence interval for Median Time Ratio (TR) is given by, 

 

0.5058 ≤ 𝑇𝑅 ≤ 0.9508        (21) 

 

Therefore, we are 95% confident that the median time ratio of patients with the treatment of 

radiotheraphy and chemotheraphy to patients with treatment of radiotheraphy only is in 

between 0.5058 to 0.9508 months. 

In addition, odds ratio also can be computed for log logistic regression model. Firstly, odds 

of survival at time, t is given by, 

 
𝑆(𝑧)

1−𝑆(𝑧)
= 𝑒−𝑧                     (22) 

  

The odds ratio is shown as follows (Hosmer & Lemeshow 1999),   

 

𝑂𝑅̂(Treament = 1, Treatment = 0) = 𝑒
𝛽̂1
 𝜎̂ = 0.4096    (23) 

 

The odds of survival at time t  for patients with the treatment of radiotherapy and 

chemotherapy is 0.4096 to that of patients with the treatment of radiotherapy only. In other 

words, patients with the treatment of radiotherapy and chemotherapy have smaller odds of 

survival compared to patients with the treatment of radiotherapy only. 

5. Conclusion  

In this research, the log logistic model was extended to incorporate a covariate with uncensored, 

right, and interval censored data. The simulation study was conducted at various sample sizes, 

censoring proportions, and interval widths to compare the performance of the parameter 

estimates based on their bias, SE, and RMSE values. The smaller the three values, the better 

the performance of the parameter estimates in terms of accuracy and efficiency. 

Based on the results of the simulation study consisting of a covariate, uncensored, right, and 

interval censored observations for various sample sizes, censoring proportions, and interval 

widths, the right imputation is the best overall method since it performs better for most 

parameter estimates. Moreover, the results of the simulation study also showed that the 

narrower interval width works better than the wider interval width with lower bias, SE and 

RMSE in the procedure of parameter estimation. The simulation overall conclusion is that the 

SE and RMSE values of the parameter estimates decrease as sample sizes increase while they 

increase as censoring proportions increase, which indicates that bigger sample sizes and smaller 

censoring proportions yield better parameter estimates. 

In the real data analysis, it indicated that the log logistic model fits the breast cancer data 

well. The covariate of treatment has a significant effect on the time to cosmetic deterioration 
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since the parameter 𝛽1  is significant. Breast cancer patients who had the treatment of 

radiotherapy only could survive longer than those who received the combination of 

radiotherapy and chemotherapy. 
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