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ABSTRACT

An evolved form of Pareto distribution, the new Pareto-type distribution, offers an alternative model for data with
heavy-tailed characteristics. This investigation examines and discusses fourteen diverse estimators for the tail index
of the new Pareto-type, including estimators such as maximum likelihood, method of moments, maximum product
of spacing, its modified version, ordinary least squares, weighted least squares, percentile, Kolmogorov-Smirnov,
Anderson-Darling, its modified version, Cramér-von Mises, and Zhang’s variants of the previous three. Using Monte
Carlo simulations, the effectiveness of these estimators is compared both with and without the presence of outliers. The
findings show that, without outliers, the maximum product of spacing, its modified version, and maximum likelihood
are the most effective estimators. In contrast, with outliers present, the top performers are Cramér-von Mises, ordinary
least squares, and weighted least squares. The study further introduces a graphical method called the new Pareto-type
quantile plot for validating the new Pareto-type assumptions and outlines a stepwise process to identify the optimal
threshold for this distribution. Concluding the study, the new Pareto-type distribution is employed to model the high-
end household income data from Italy and Malaysia, leveraging all the methodologies proposed.

Keywords: Estimation techniques; heavy-tailed data; income data modelling; Monte Carlo analysis; Pareto distribution;
robustness

ABSTRAK

Satu taburan Pareto yang berkembang iaitu taburan jenis Pareto baharu, menawarkan model alternatif untuk data
dengan ciri ekor berat. Kajian ini meneliti dan membincangkan empat belas penganggar yang pelbagai bagi indeks ekor
jenis Pareto baharu, termasuk penganggar seperti kebolehjadian maksimum, kaedah momen, produk jarak maksimum
bersama versi yang diubah suai, kuasa dua terkecil biasa, kuasa dua terkecil berwajaran, persentil, Kolmogorov-Smirnov,
Anderson-Darling Bersama versi yang diubah suai, Cramér-von Mises, dan varian Zhang bagi Kolmogorov-Smirnov,
Anderson-Darling serta Cramér-von Mises. Dengan menggunakan simulasi Monte Carlo, keberkesanan penganggar
ini dibandingkan dengan kehadiran dan tanpa kehadiran titik terpencil. Hasil kajian menunjukkan bahawa, tanpa titik
terpencil, produk jarak maksimum bersama versi yang diubah suai dan kebolehjadian maksimum adalah penganggar
yang paling berkesan. Sebaliknya, dengan kehadiran titik terpencil, penganggar terbaik adalah Cramér-von Mises,
kuasa dua terkecil biasa dan kuasa dua terkecil berwajaran. Kajian ini seterusnya memperkenalkan kaedah grafik yang
disebut sebagai plot kuantil jenis Pareto baharu untuk mengesahkan andaian jenis Pareto baharu dan menggariskan
proses bertahap untuk mengenal pasti ambang optimum untuk taburan ini. Mengakhiri kajian, taburan jenis Pareto
baharu digunakan untuk memodelkan data pendapatan isi rumah kelas atas dari Itali dan Malaysia, memanfaatkan
semua kaedah yang dicadangkan.

Kata kunci: Analisis Monte Carlo; data ekor berat; kaedah penganggaran; keteguhan; pemodelan data pendapatan;
taburan Pareto
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INTRODUCTION

Introduced by Vilfredo Pareto, an Italian civil engineer,
economist, and sociologist, the Pareto distribution
was initially conceptualized as a means to illustrate
the distribution of income or wealth within a society
(Amoroso 1938). Due to its inherent properties of heavy-
tailed behavior, the Pareto distribution has found frequent
application in modelling the upper tail, or top income,
of income distribution (Diaz, Cubillos & Grifien 2021;
Garcia & Caballero 2021; Majid & Ibrahim 2021;
Majid, Ibrahim & Masseran 2023; Safari, Masseran &
Ibrahim 2018a). Its suitability in this context is further
reinforced by the observed transition in the shape of
empirical income distribution from the middle segment,
which demonstrates exponential decay, to the upper tail
where decay is relative to power, hence exhibiting power-
law behavior (Safari et al. 2021). Additionally, the Pareto
model's ability to accurately depict top income data has
made it a key tool in calculating economic indicators,
like the Gini coefficient (Alfons, Templ & Filzmoser
2013; Giorgi & Gigliarano 2017; Hlasny & Verme
2018). Over time, its application has extended beyond
economics into a variety of fields including the sciences,
medicine, social sciences, and finance (Bee, Riccaboni
& Schiavo 2019; Coronel-Brizio & Hernandez-Montoya
2005; Filimonov & Sornette 2015; Gabaix 2009; Giesen,
Zimmermann & Suedekum 2010; Lux & Alfarano 2016;
Meyer & Held 2014; Newman 2005; Pinto, Lopes &
Machado 2012; Xu et al. 2017).

In more recent years, a new Pareto-type (NP)
distribution has been developed by Bourguignon,
Saulo and Fernandez (2016). They expounded upon
the probabilistic and inferential properties of this
distribution and demonstrated its applicability in modeling
income and reliability data. The NP distribution, a
transformation of the half logistic distribution and a
generalization of the Pareto distribution, has had its
additional significant properties further explored by
Sarabia, Jorda and Prieto (2019). The NP distribution is
characterized by the transformation of the half logistic
distribution and is a generalization of the well-known
Pareto distribution. The NP distribution is increasingly
being recognized as a superior alternative to the
traditional Pareto distribution for a broader range of data.

One notable aspect of the traditional Pareto
distribution is the 80/20 rule, a principle where
approximately 80% of outcomes result from 20%
of causes. In the context of the conventional Pareto
distribution, this rule is typically observed when
the tail index is approximately 1.16 (Dunford, Su &

Tamang 2014). Interestingly, this rule also applies to
the NP distribution, with a slight modification in the
tail index value. For the NP distribution, the 80/20 rule
is observed when the tail index is around 1.2062. This
subtle yet significant variation in the tail index value for
the NP distribution highlights its unique characteristics
and potential applicability, especially in the analysis
of income distribution and other areas where Pareto's
principle is traditionally applied.

If we assume that a random variable X is associated
with an NP distribution, its probability density function
(PDF), cumulative distribution function (CDF), and
quantile function are given as follows:

_ o 2a(xe/0)* 2ax§x®! S
FE a0 = o0~ Gty ¥ (D
1—(xo/x)" 2x§
F(x: = = —
(x; @ o) 1+ (x/x) x4+ x§’ 2 %0 (2)
and
1+y

1/a
Qwiwx) =x (1) . 0<y<l (3

-y
Herein, a signifies the shape parameter or tail index, and
x, refers to the scale parameter or threshold. The random
variable with the CDF illustrated in Equation (2) can be
denoted as X~NP(a, x,).

Bourguignon, Saulo and Fernandez (2016)
proposed and employed the maximum likelihood
(ML) estimator for evaluating the tail index of the NP
model. The tail index’s ML estimate can be derived
by maximizing the log-likelihood function of the
NP distribution with respect to a. Typically, the ML
estimator is regarded as efficient and is frequently
used in parametric distribution for parameter estimation.
However, the ML estimator’s efficacy diminishes in the
presence of outliers, often leading to significant bias.
There exists a range of alternative estimators to estimate
the NP model’s tail index. Aligning with our primary
objective, this study contemplates and introduces 14
diverse estimators for the NP tail index. Subsequently,
the performance of all 14 estimators is evaluated through
a simulation study, in settings both with and without
outliers. The findings from this study would enable us to
identify the most efficient estimator for the NP tail index
under varying conditions, thereby offering a practical
guide for choosing the right methodology for real-world
data applications.



This investigation also proposes a graphical
instrument, termed the NP quantile plot, employed for
examining the NP model’s assumption in the data. This
tool serves as an initial analytical instrument before
conducting further statistical analysis. Additionally, we
present a straightforward stepwise approach to establish
the NP model’s threshold. Essentially, the process
involves choosing a threshold value that minimizes the
Kolmogorov-Smirnov statistic. This method enables
optimal determination of the threshold parameter. In
terms of real-world data application, we utilize all the
methodologies proposed in this paper to model the top-
end data of household income in Italy and Malaysia.

The remainder of this paper unfolds as follows:
Next section presents the 14 unique estimators for the
NP tail index. The NP quantile plot is introduced in the
following section. Subsequently, we outline a procedure
for establishing the optimal threshold of the NP model,
followed by the contrasts performances of the 14 NP tail
index estimators through a Monte Carlo simulation. In
the section that follows, we employ the NP distribution
to model the top-end data of household income. Finally,
in the last section, we summarize our findings and
conclusions.

TAIL INDEX ESTIMATORS FOR THE NP MODEL

This section introduces 14 estimators designed to assess
the tail index of the NP distribution. These estimators
include the ML, Method of Moments (MoM), Maximum
Product of Spacing (MPS), Modified Maximum Product
of Spacing (MMPS), Ordinary Least Squares (OLS),
Weighted Least Squares (WLS), Percentile (PC),
Kolmogorov-Smirnov (KS), Anderson-Darling (AD),
Modified Anderson-Darling (MAD), Cramér-von Mises
(CVM), Zhang’s Kolmogorov-Smirnov (ZKS), Zhang’s
Anderson-Darling (ZAD), and Zhang’s Cramér-von Mises
(zCVM). For all estimators mentioned, it is assumed
that the threshold parameter x, is already known. In
the Threshold Selection section, we will provide a
straightforward process for choosing an appropriate
value for the parameter x,.

MAXIMUM LIKELIHOOD
Consider arandom sample of size n, denoted as X, X, ...,

X from the NP(q, x,) distribution. The NP’s log-likelihood
function can be expressed as follows:

{(a,x9) =nlog(2a) —nlog(xy)
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The ML estimations of the paramter a, designated as @
“wi» are derived by maximizing the log-likelihood function
with respect to a. In other terms, &, can also be found

by resolving the following non-linear equation:
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METHOD OF MOMENTS

The MoM estimates of parameter «, denoted as @, ,,,
are achieved by equating the first theoretical moment
of the NP distribution to the first empirical moment. As
per Sarabia, Jordd and Prieto (2019), if the random
variable X follows NP(e, x,), the rth moment of X is
represented as:
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where B(:; -,') represents the incomplete beta function
defined as:
y
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By aligning the first theoretical moment with the first
sample moment, we derive:
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The estimate &,,,, can be obtained numerically by
resolving the nonlinear equation expressed in Equation
(8) for a.

MAXIMUM AND MODIFIED MAXIMUM PRODUCT OF
SPACING

Parameter  estimates, denoted &, are calculated using
the MPS methodology, suggested by Cheng and Amin
(1983). This technique revolves around the concept of
discrepancies between consecutive data points’ CDF
values. The uniform spacing of a random sample from

the NP(a, x,) distribution is characterized by:

D; = F(x(iy; @, %) — F(x(i—1); @, Xo), )
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where X stands for an ordered sample observation for i
=1,2,...,n. Here, F (x(o)); a, x)=0,F(x a, x)) =1

1y
and Y11 D;= 1. Using the MPS, the parameter estimates
a, .. are procured by maximizing the geometric mean of

aMPS k
the spacing:

1/(n+1)

, (10)

n+1

in relation to a, or equivalently, by optimizing the
function

n+1

1
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A variation of MPS, the MMPS, was suggested by
Jiang (2013). In this method, the square roots of the
smallest and largest spacings were computed to produce a
product of # effective spacings. In MMPS, the parameter
estimates @, , ..are procured by maximizing the following
function:

MMPS

(12)
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or by maximizing the function

n
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Notably, the MPS and MMPS estimators are sensitive
to closely situated observations and especially duplicates
(Cheng & Stephens 1989). In case of duplications resulting
from multiple observations, the repeated spacing should
be substituted by the corresponding likelihood.

ORDINARY AND WEIGHTED LEAST SQUARES

Consider XS Xy S Sx, 10 be the ordered statistics
from a random sample of size n taken from the NP(a, x,)
distribution. We know that:
E[F (X)) = —
O 057
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with respect to a.

PERCENTILE

The PC estimates of the parameter o are calculated using
Kao's (1958) method, leveraging the NP distribution's
defined CDF. In this context, p, estimates Flx,; o, x,).
The Euclidean distance, as defined herewith, is the
measure between the population and sample percentiles:

E(a) = Z[x(i) - Qi a, xo)]zr (16)
=1

where x , signifies an ordered sample observation for i =1,
2,...,nand p=i/(n+1). The PC estimates, represented as

@, are determined by minimizing the Euclidean distance
E(a) concerning a.

EMPIRICAL DISTRIBUTION FUNCTION STATISTICS

The parameter o estimates can also be derived by
minimizing the empirical distribution function (EDF)
statistics, a set of statistics predicated on the discrepancy
between the CDF estimates and the EDF (Luceno 2008,
2006). Lucefio (2008) also refers to these estimators as
maximum goodness-of-fit estimators to differentiate
from unrelated minimum distance methods. This section
presents seven EDF statistics estimators for the NP
distribution’s tail index, including KS, AD, MAD, CVM,
7KS, ZAD, and ZCVM.

The estimates for each parameter o, symbolized

~ ~ A ~ ~ ~

as aKS’ aAD’ aMAI)’ aCVM’ aZKS’ aZAD’ and aZCVM’ are

attained by minimizing the following EDF statistics
with respect to a:
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where x; refers to an ordered sample observation for i

=1,2,...,n.

NEW PARETO-TYPE QUANTILE PLOT

Visual exploration is an essential preliminary step in
applied data analysis. To facilitate this, we propose the
NP quantile plot, a graphical method for verifying the
NP distribution assumption in upper-tail data. Based
on transformation techniques, it can be proven that NP
random variable X’s logarithms follow an exponential-
type distribution (Appendix). Therefore, we can construct
the NP quantile plot by mapping the observed values’
logarithms, log (x) fori= 1, 2,..., n, against the theoretical
quantiles of the standard exponential-type distribution,
ie.,

pi+1 o 24
log(l—m)' i=12,..,n, (24)
where p, = i/(n + 1). If the upper-tail data align with the
NP distribution, the NP quantile plot’s observations will
appear nearly linear. We can use the fitted line’s leftmost
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point to estimate the threshold, i.e., x,. An additional
benefit of the NP quantile plot is its utility as a graphical
tool to detect outliers or extreme observations in the
upper-tail data by identifying points that deviate from
the fitted line.

THRESHOLD SELECTION

Choosing the correct threshold parameter is vital when
working with the Pareto family of distributions. The
accuracy of the threshold affects sample size of the
upper-tail data and in turn, impacts the bias of the
estimated tail index and variance of parameter estimates.
Simple methods like selecting a fixed top proportion of
the distribution (10%, 5% or 1%) have been suggested
(Gabaix 2009). Graphical tools like the Pareto quantile
plot, Zipf plot, and mean excess function plot can also
be used to determine the threshold (Beirlant, Vynckier
& Teugels 1996; Cirillo 2013; Cirillo & Hiisler 2009).
However, these methods can be subjective and may not
yield an optimal threshold.

In our study, we use the KS statistic to determine
the optimal NP distribution threshold, i.e., we select the
threshold value that minimizes the KS statistic (Equation
17). This approach has been widely used in the Pareto
family of distributions (Safari et al. 2020, 2019; Soriano-
Hernandez et al. 2017) and has been applied in income
data to identify high earners (Oancea, Andrei & Pirjol
2017; Safari, Masseran & Ibrahim 2018b; Soriano-
Hernandez et al. 2017). The procedure to ascertain the
optimal threshold for the NP model leveraging the KS
statistic unfolds as follows: Step 1 Use the NP quantile
plot to identify candidates for the optimal threshold,
SaY, X5 Xyps-- > X,,- Step 2 Estimate the shape parameter
of the NP model, say, &,, using X, as the estimated
threshold parameter. Step 3 Compute the KS statistic for
the estimated NP model, i.e., F(x; a,, x,)- Step 4 Repeat
steps 2 and 3 for other parameters of the NP model, i.e.,
(X O)s (X530 3)s --oy (X, @ ). Step 5 Finally, choose the
threshold that yields the minimum KS statistic value as
the optimal threshold.

MONTE CARLO SIMULATION

Monte Carlo simulation is employed to evaluate the
efficacy of the various methods used for estimating
the tail index of the NP distribution, both in scenarios
with and without outliers. This approach allows us to
determine which methods remain robust in the face of
outlier data. The subsequent subsections detail the design
and outcomes of the simulation.
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SIMULATION DESIGN

Data sets are generated from the NP(a, x,) distribution
distribution with a known threshold value, x,= 1, and
varied shape parameter values, a = 1.5, 2,2.5, and 3. The
simulation study uses two categories of sample sizes:
small (n = 30, 50, and 70) and large (n = 300, 500, and
1000). Observations from the simulated data are then
randomly chosen and replaced with outliers. For small
sample sizes, we introduce outliers in fixed numbers,
m =0, 2, and 5, while for large samples, outliers are
incorporated at fixed proportions, ¢ = 0%, 2%, and 5%.
The outliers stem from a normal distribution N(x, o)
with mean u = 736.78, 141.42, 52.53, and 27.14, and
standard deviation ¢ = 1. They correspond to the 99.99%
quantile of the NP distribution for the true NP model with

shape parameter @ = 1.5, 2, 2.5, and 3 and x, = 1. This
simulation is executed for 10000 pseudo-random samples
over 10000 simulation runs.

The performance of each estimation method is
evaluated based on the percentage relative root mean
square error (RRMSE). For a known value of the NP tail
index «, the RRMSE is calculated as:

where @, is the estimated NP tail index for the ith (i = 1,
2,..., N) simulated sample, and N represents the number of
simulation runs or simulated samples. A smaller RRMSE
signifies greater accuracy and precision.

SIMULATION RESULTS

The Monte Carlo simulation findings are illustrated in
Figures 1 and 2, and can be summarized as follows: 1).
All methods’ performances enhance as the sample size
n increases, resulting in a decrease in RRMSEs, 2). No
significant pattern of RRMSE change is observable for
most estimators relative to a. Only the MoM estimator
displays an improvement as « increases, 3). In both small
and large sample size scenarios, the PC estimator is least
effective at estimating the a parameter, 4). The ML,
MOM, MPS, MMPS, PC, ZKS, and ZAD ZCVM estimators
are not resilient to outliers. As outlier contamination
increases, these estimators’ performances noticeably
decline, 5). With a small sample size (Figure 1), we
observe: a) Without outliers (m = 0), MPS, MMPS, and
ML estimators are top-tier at estimating parameter o, with
MPS performing slightly better than MMPS and ML, b)
For a small number of outliers (m = 2), robust estimators
include CVM, OLS, WLS, KS, AD, and MAD, with CVM

having a marginal edge over others in this scenario, and
¢) When the outlier count is high (m = 5), CVM, OLS,
and WLS prove robust, with CVM slightly outperforming
the rest. 6) For large sample sizes (Figure 2): a) Without
outliers (¢ = 0%), MPS, MMPS, and ML estimators are
most effective, b) For a small outlier proportion (€ = 2%),
CVM, OLS, WLS, KS, AD, and MAD hold robustness, with
CVM and OLS exhibiting slightly better performances
than the others, ¢) When the outlier proportion is high (e
= 5%), CVM, OLS, and WLS remain robust, with CVM
and OLS performing slightly better than WLS.

APPLICATION TO HOUSEHOLD INCOME DATA

This section focuses on employing all methodologies to
model the upper-tail data for household income in Italy
and Malaysia.

DATA DESCRIPTION

Our first dataset comprises the annual net disposable
income of Italian households for 2014 and 2016,
sourced from the Bank of Italy’s Survey on Household
Income and Wealth (Banca d’Italia 2008). This survey,
initiated in the 1960s, collects information on Italian
households’ income and savings. We note that this data
includes minor instances of zero and negative incomes,
representing less than 0.8% of total samples per year.
Due to our study’s NP model which only accounts for
positive random variables, these instances have been
excluded, focusing the analysis on positive income data.
Table 1 presents the descriptive statistics of this data.

The second dataset features 2014 and 2016
monthly net incomes of Malaysian households, derived
from the Household Income Surveys (HIS) conducted
by the Malaysia’s Department of Statistics (DOSM
2017). The HIS serves three main purposes: collecting
data on households’ income distribution, gathering
statistics on impoverished households, and determining
households’ accessibility to basic amenities. This data
informs governmental policy-making, especially in
poverty eradication and income distribution strategies.
Descriptive statistics of this dataset are provided in
Table 2.

MODELING THE UPPER-TAIL DATA USING THE NEW
PARETO-TYPE DISTRIBUTION

We start by building an NP quantile plot to validate the
suitability of the NP model for the upper sections of Italian
and Malaysian household income distributions. The NP
quantile plots for Italian household income data from
2014 and 2016 are displayed in Figure 3, while those for
Malaysian household income data from the same years are
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TABLE 1. The descriptive statistics of the Italian household income data

Sample

Year size (1) Mean (€) Median (€) Min (€) Max (€) Variance Skewness Kurtosis
2014 8109 31433.95 25834.25 3.07 440199.10 503660705 3.3032 28.1831
2016 7366 30714.75 25200.92 1.75 541879.20 516663044 4.7770 65.4361
TABLE 2. The descriptive statistics of the Malaysian household income data
Sample Mean Median Min . .
Year size (1) (RM) (RM) (RM) Max (RM) Variance Skewness Kurtosis
2014 24463 4982.73 3750.25 197.42 182311.40 23225628 8.0130 180.4427
2016 23536 5508.80 4163.08 269.58 274940.50 27747498 11.2428 393.0925

shown in Figure 4. Figures 3 and 4 show that the upper
sections of the NP quantile plots almost follow a straight
line, signifying that the high-income data from Italian
and Malaysian households adhere to an NP distribution
assumption. Moreover, certain data points that deviate
from the fitted lines can be observed, highlighting the
presence of extreme outliers — households in Italy and
Malaysia with considerably higher incomes compared
to others.

The NP quantile plot is also used as a visual tool to
identify potential candidates for the optimal threshold.
Practically, these candidates can be selected from the
leftmost data point on the fitted line to a specified
upper limit. In each NP quantile plot (Figures 3 & 4),
the intersection between the red dashed horizontal line
and the fitted straight line represents the leftmost data
point, which is at the 45" percentile of Italian household
income data. Moreover, the intersection point between
the blue dashed horizontal line and the fitted straight
line signifies the upper limit for the candidates of the
optimal threshold, situated at the 95" percentile of Italian
household income data. The optimal threshold for the NP
model is then determined by pinpointing the threshold
value that minimizes the KS statistic.

To gauge the tail index of the NP model, we employ
13 estimators, including ML, MoM, MPS, MMPS, OLS,
WLS, KS, AD, MAD, CVM, ZKS, ZAD, and ZCVM. Due
to its poor performance in the simulation study, the PC
estimator is not included. To evaluate the efficacy of these
methods in estimating the NP distribution’s tail index, we
employ the KS test, AD test, CVM test, and coefficient of
determination (R?) to assess the goodness-of-fit (GoF).

The formulae for the KS, AD, and CVM statistics are
given in Equations (17), (18), and (20), respectively. The
coefficient of determination, R?, is computed as follows:

2 _
= 26)
" F G @, x0) — Fx a,%0)]”

R G @ x0) = FOo a,x0)]” + S0 [Fu(x) — FOxs a,x0)]

Here, I’ (x) represents the empirical cumulative
probability for the ith observation above the threshold
X, ﬁ(x,.; a, x,) is the estimated cumulative probability
for the ith observation data above the threshold x; under
the NP model, and F(x; a, x,) represents the mean of
F'(xl.; a, x,). Using all of these GoF measures, a global
score (GS) criteria is computed to determine the best
estimator. The process of computing the GS criteria is as
follows: Step 1 Compute the KS statistic, AD statistic,
CVM statistic, and 1 - R? value for each estimator. Step
2 Normalize each of the GoF measures from Step 1,
converting them into standard normal random variables.
This can be done using the formula:

zj = —ki"s_. 5 for i=12,.13 j=1,2,3,4. 27)

J

Here, z, is the standardize_td score, k,-,- is the ith value
of the jth GoF measures, and k; and s, are the mean and
standard deviation of the jth GoF measures, respectively.
Step 3 Convert the standardized score to a criteria value
between 0 and 1, using the standard normal CDF, with

the formula:



—t2

1 (% -2
P(zj) = Ef_w e 2 dt. (28)
Step 4 Compute the GS by multiplying all the transformed
standardized scores from Step 3. The formula for this is:

GS = O(z;1) X D(z;3) X P(zi3) X P(244),

(29)
fori=1,2,..13.

The estimator which results in the smallest GS is
considered the most optimal for estimating the NP tail
index.

Tables 3 and 4 detail the parameter calculations
and GoF for the NP distribution’s upper tail concerning
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Italian and Malaysian household data, respectively.
As evidenced in Table 3, the OLS and WLS methods
exhibit the lowest GS in 2014 and 2016, respectively,
indicating their superior efficacy in estimating the NP tail
index for the corresponding years in the context of Italian
household income. Moving to the Malaysian context,
as delineated in Table 4, the MAD and OLS emerge as
the most successful performers for estimating the NP
tail index for 2014 and 2016, respectively. Using these
optimal estimators, the NP tail index (&) is observed
to hit its lowest point in 2016 for Italy and in 2014 for
Malaysia, suggesting the heaviest NP tail concentration
in those years.

NP guantile plot (2016)
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FIGURE 3. NP quantile plots of Italian household income data for (a) 2014

and (b) 2016
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FIGURE 4. NP quantile plots of Malaysian household income data for (a)
2014 and (b) 2016
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TABLE 3. Parameter estimates and GoFs of the NP distributions for the upper-tail data of Italian household income using

several different estimators

Year Estimator X, a K(i_itzlt:lj)ic A(]Z_it;tlilset)ic C\(/p]\ilvitﬁ: ;tic R? GS (Rank)
2014 ML 37765.10  3.8004 (838?; (gzgggg) (g:gzgg) 09998197  0.0161 (7)
oM TN g 008 oany  0oasyy D990 04104(12)
wps 376510 oo (g:gggg) (8:3 é z;) (g:g;%) 0.9998047  0.0204 (9)

mmps 776310 36000 <3133§§> (8:3223) (g:ggfg) 0.9998188  0.0128 (5)

oLs 388658 Lo (g:gggg) (8;222) (g:gggi) 0.9998333  0.0018 (1)

wLs 3883658 Lo (g:gggg) (8:323(5)) (82322) 0.9998131  0.0042 (3)

KS T30 37941 (g:gggg) (8:3;247‘) (g:gig?) 09998010 0.0138(6)

AD O 39022 (818822) (8:(2)23(5)) (313233 09998119 0.0052(4)

MaD  S8T38L 50005 (g:gggi) (823%351;) (g:gig?) 0.9997944  0.2505 (1)

ks OIS g <323§2§> (8:33411411) (gi§Z§§> 09997194 0.9411(13)

sap | 3TI6510 oo (81885‘1‘) (g;gg) (g:gigz) 0.9998004  0.0280 (10)

zovm 3776310 5 509 (g:ggﬁg) (gigégi) (8:224712) 09998126  0.0162 (8)

2016 ML 3602462 3 gogs (g:ggg) (8222?5)) (g:ggég) 09997145 0.2376 (1)
vom 3602462 oo (g:géﬁ) (8:2;3‘;) (g:gggi) 0.9997315  0.0013 (3)
MMPS  36024.62  3.6885 (gjgiéi) (8:222‘1‘) (g:gij‘;) 09997152 0.2220 (9)

oL 3560493 (g:g(l);i) (812233) (g:ggg?) 0.9997320  0.0038 (5)

wis 3602462 L oo (828(1)42#1‘) (8:2;312) (g:gggg) 0.9997318  0.00119 (1)
O ST

AD 00802 36766 (g:g(l)gg) (8:2;312) (8:33241‘) 09997319 0.00121 (2)

MAD  36024.62  3.6837 (gig;jg) (8;;32) (g:gigf) 09997251  0.0329 (8)

cum 3TASS (g:g(léé) (Siéﬁié) (g:gg?;) 0.9997288  0.0041 (6)

ks 7091550 (g:gég‘;) (8:‘5;‘21) (8222‘%) 09997035 07943 (13)

zap 0300567 (g:g;ﬁ) (giggg) (gigiﬁi 09997100 0.2307(10)

ZCVM  36033.60  3.6738 (g:géég) (8:‘5; ;) (g:g%g) 09997092  0.2954 (12)
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TABLE 4. Parameter estimates and GoFs of the NP distributions for the upper-tail data of Malaysian household income using
several different estimators

Year Estimator %o a K(IS]it:ltlils;)ic A(];_iztli;t)ic C\(]p]\ilvztlit;tic R’ GS (Rank)
2014 ML 475085  2.7408 (g:ggg?) (8:22(6);) (8:2%‘2‘) 0.9998764  0.0190 (9)
MOM 481292 27762 (gzgggg) ((1):;(1)3?) (gég%) 0.9997567  0.9874 (13)

MPS 473492 2.7361 (8:3(7’2) (g:égf‘;) (8:2%(5)) 0.9998769  0.0130 (6)

MMPS 475085 27408 (g:gg?g) (8:2228) (8:225‘31) 09998764 0.0190 (8)

OLS 470963 27274 (gzgggg) (8:225) (8:2223) 0.9998811  0.0069 (4)

WLS 447431 2.6562 (822% (gzgggi) (8:2222) 09999012 0.0073 (5)

KS 469439 27233 (gzgggg) (312523) (gzgggﬁ) 0.9998745  0.0160 (7)

AD 447431 2.6559 (gjgggg) (g:gggz) (8:238421) 09999018 0.0057 (2)

MAD 447431 26542 (g:gggg) (gi‘;’?éz) (8:%12 0.9999045  0.0046 (1)

CVM 470963 27275 (gzgggg) (gzggg) (8:222) 0.9998811  0.0069 (3)

7KS 472710 27354 (8:2(5)%) (gzéggg) (8:233411) 0.9998739  0.0231 (10)

ZAD 478576 27584 (8:2%2) (8:;(6)‘7‘?) (g:}ég) 0.9998390  0.3647 (11)

ZCVM 478576 2.7592 (gjggﬁ) (gggii) (8:41‘322) 0.9998383  0.3890 (12)

2016 ML 727860 33076 (8:222‘7‘) (8:‘7‘22) (8:2222) 09998651 0.0338 (7)
MOM 677212 3.1590 (gzgggg) (éiggg) (gfégg) 0.9997348  0.9334 (13)

MPS 7087.99  3.2584 (8:2223) (g%ﬁ) (8:%?;) 0-9998366 ) 1164 (9)

MMPS 727860  3.3076 (g:gggj) (8:‘7‘242‘3) (g:gggg) 09998649 0.0341 (8)

OLS 7739.05 34727 (gigggg) (8:%;3) (00'%339;12) 0.9998991  0.0015 (1)

WLS 773905 3.4679 (g:gggg) (8:?3);;) (8:8‘3‘2?) 0.9998954  0.0020 (3)

KS 7739.05  3.4866 (gzgggg) (8222(7)411) (gzggg% 0.9998829  0.0030 (5)

AD 7739.05  3.4671 (g:g%g) (8:3%2) (8:8‘3‘?2) 09998944  0.0025 (4)

MAD  7739.05 34578 (8:82(7)‘1‘) (8:%8;) (g:gggé) 09998723 0.0126 (6)

CVM 773905 34729 (gzgggg) (8:%‘2%) (82822(1)) 0.9998991  0.0015 (2)

7KS 689151  3.1896 (8:2222) (ggigf) (8:23;) 0.9997972  0.5504 (12)

ZAD 7087.99 32567 (g:ggi;) (gzggg‘;) (8:222) 0.9998348  0.1360 (10)

zovm TOMAT 5oy (8:222(2)) (8:223(1)) (8:%12) 0.9998281  0.1680 (11)
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Figures 5 and 6 illustrate the best-fitted PDF plot
of the NP distribution to the high-income data of Italian
and Malaysian households, respectively. It is evident

Distribution of upper-tail data (2014)

from these figures that the NP model fits well to the high-
income data, suggesting that this model is well-suited
to describe the income distribution of the wealthiest
households in both countries.

Distribution of upper-tail data (2016)
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FIGURE 5. Best fitted NP density on a histogram for the upper-tail data of
Italian household income for (a) 2014 and (b) 2016
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FIGURE 6. Best fitted NP density on a histogram for the upper-tail data of
Malaysian household income for (a) 2014 and (b) 2016



Utilizing the Lorenz curve (LC) and the Gini
coefficient from the NP model (Abd Raof et al., 2022;
Sarabia, Jorda & Prieto 2019), we examine income
disparity amongst the highest earners in Italy and
Malaysia. Table 5 presents an overview of the Gini
coefficients, and Figure 7 graphically represents the
Lorenz Curves (LCs) for the upper-income segments of
both Italy and Malaysia, specifically for the years 2014
and 2016. A Gini coefficient less than 0.3, as shown
in Table 5, points to low levels of income inequality
among the top-earning households in both nations.
This observation of minimal income inequality is
further corroborated by the LC (Figure 7), showing a
close alignment with the line of perfect equality. It is
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important to note that insights into income inequality
can also be gleaned from the estimated NP tail index
alone; smaller values of the NP tail index correlate with
higher Gini values, indicating a more skewed income
distribution. The LC allows us to discern the distribution
of income among different tiers within the top earning
households. If we segment the upper-class households
in both countries into two divisions, the lower 80% and
the upper 20%, as illustrated in Figure 7, the lower 80%
group commands between 60.67% and 68.17% of the
total top earners’ income. On the other hand, the upper
20% possesses approximately 31.83% to 39.33% of the
top earners’ total income. From these observations, it is
clear that the conventional 80/20 Pareto principle does
not hold true in this instance.

TABLE 5. Estimated Gini coefficients based on NP model for the upper-class earners in Italy and Malaysia

Country Year Estimated NP tail index Gini
2014 3.9156 0.1764
Italy
2016 3.6767 0.1893
2014 2.6542 0.2759
Malaysia
2016 3.4727 0.2021
100%
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- — — ltaly 2016
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——— Malaysia 2016
75% A
g 68.17%
S 67.22%; i:iiiiiiiiiiiiiiiiiiiiiiiiigiiiig
£ 66.29% 3
5 BOBTYor = v s # s n s s s s nn s mnsmnnnnnnn
o 50%1
o
2
o
@
2
®
: -
3 25%- g
A
//l
~,
0% 1
80%
0% 25% 50% 75% 100%

Cumulative proportion of population

FIGURE 7. The fitted LCs based on NP model for upper-class earners in Italy and Malaysia
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CONCLUSION

This research explored the estimation of the NP tail
index through the lens of 14 diverse estimators. These
included ML, MoM, MPS, MMPS, OLS, WLS, PC, KS, AD,
MAD, CVM, ZKS, ZAD, and ZCVM. The efficiency of
each estimator was scrutinized in the contexts of both
the absence and presence of outliers, assessed through
a comprehensive Monte Carlo simulation. The findings
pointed towards MPS, MMPS, and ML as the three most
robust estimators for the NP tail index in data devoid of
outliers. In contrast, in the presence of outliers, CVM,
OLS, and WLS emerged as the top performers. It is
important to note that the PC estimator delivered the
weakest results for estimating the NP tail index.

A new graphical instrument, named the NP quantile
plot, was introduced to verify the assumption of an NP
distribution in upper-tail data. When data points on this
plot align to form an almost straight line, it suggests that
the upper-tail data are compliant with the NP model.
This plot also proves beneficial in pinpointing outliers
within the upper-tail data, as it highlights data points that
deviate from the fitted line. Additionally, a straightforward
procedure was developed to discern the threshold of the
NP distribution, where the optimal threshold is selected
to minimize the KS statistic.

Applying these methodologies to actual datasets,
the study modeled the upper-tail data of household
income for Italy and Malaysia in 2014 and 2016. The
NP quantile plot substantiated the applicability of the NP
distribution assumption to these datasets and identified
the existence of outliers. Excluding the PC, all 13
estimators were employed to estimate the NP tail index.
An amalgamated approach, utilizing the KS statistic, AD
statistic, CVM statistic, and 1 — R?, was used to pinpoint
the best estimator. The lowest GS value, resulting from
this integrated approach, determined the top estimator
for the NP tail index. The investigation showed that
OLS (2014) and WLS (2016) emerged as the superior
estimators for Italy, while MAD (2014) and OLS (2016)
excelled for Malaysia. This analysis reaffirmed that
the NP model was a good fit for the upper-tail data of
Italian and Malaysian household income, suggesting its
effectiveness in explaining the income dynamics of the
top earners in these countries.
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APPENDIX

Theorem 1 The natural logarithms of an NP(a, x, = 1)
random variable adopt an exponential-type distribution.

Proof of Theorem 1 Let's assume that the random variable
X obeys NP(a, x,) with a PDF defined by Equation (1).
Let's introduce a new random variable ¥ = log (X), and
consider the transformation y = log (x), its inverse x = ¢”,
and the corresponding Jacobian,

ax_ y
ay—e.

Employing the transformation technique, we can derive
the PDF of Y as:

ox
F0) = fa7 oM 3]

_ 2axg(e”) !

“ @t

2axfe™y

=m, y>log(x0)

When we set x, = 1, we arrive at:

2ae™

f()’)zm, y>0.

This establishes that f{y) is the PDF of an exponential-
type distribution. The CDF and quantile function of this
exponential-type distribution are:

e —1
FO =77 v>0
z+1
Q(Z)_M 0<z<1
= " , )



