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ABSTRACT

With the advent of the internet, social media of Facebook and Twitter, as well as the communication technology of 
WhatsApp and Telegram, the speed and scope of the rumour dissemination has been expanded. Understanding the 
characterization of rumour dissemination and how it spreads can help in mitigation measures to avoid the spread of 
the rumour. Therefore, it is crucial to propose a mathematical model, and in particular this paper is concerned with the 
epidemic model to understand the dissemination of the rumour in social network. The mechanism of rumour propagation 
is behaving like infectious diseases spread; hence this research adopted the epidemiological model approach. In this 
network, the compartment is divided into susceptible, ignorant, propagation and stiflers. The basic influence number, 
the equilibrium points of rumour-free and the endemic equilibrium state were obtained and discussed. For the local 
stability, the Next Generation Matrix was used. Numerical simulation is performed to understand the dynamics of the 
spread of rumour in a population or social networks, its impact in a population, and adjusting mechanisms in curbing 
the spread of rumour. 
Keywords: Adjusting mechanism; mathematical model; rumour spreading; stability 

ABSTRAK

Dengan kemunculan internet, media sosial seperti Facebook dan Twitter, serta teknologi komunikasi seperti WhatsApp 
dan Telegram, penyebaran khabar angin tersebar meluas dan berlaku dengan pantas. Memahami ciri penyebaran 
khabar angin dan bagaimana ia merebak dapat membantu dalam langkah mitigasi untuk mengawal penyebarannya. 
Oleh itu, penting untuk mencadangkan model matematik dan kajian ini membincangkan model epidemik untuk 
memahami penyebaran khabar angin dalam rangkaian media sosial. Mekanisme penyebaran khabar angin berperilaku 
seperti penyebaran penyakit berjangkit; oleh itu, penyelidikan ini mengambil pendekatan model epidemiologi. Dalam 
rangkaian ini, kompartmen dibahagikan kepada populasi rentan, populasi yang tidak ambil tahu dan populasi penyebar 
dan populasi penghalang. Nombor pengaruh asas, titik keseimbangan tanpa khabar angin dan keadaan keseimbangan 
endemik diperoleh dan dibincangkan. Untuk kestabilan tempatan, Matriks Generasi Seterusnya digunakan. Simulasi 
berangka dijalankan untuk memahami dinamik penyebaran khabar angin dalam populasi atau rangkaian sosial, kesannya 
dalam populasi dan mekanisme penyesuaian dalam mengekang penyebaran khabar angin.
Kata kunci: Mekanisme perubahan; model matematik; penyebaran khabar angin; stabiliti

INTRODUCTION

A rumour refers to unverified information that is spread 
within a particular context through various channels (Li 
et al. 2021; Zhou et al. 2022). In the era of the internet, 

a plethora of online rumors can rapidly circulate due to 
technological advancements and the widespread influence 
of social media platforms such as LiveJournal, Facebook, 
Twitter, YouTube, and Hi5 among others. With the world 
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evolving into a global community through social media, 
spreading rumors has become instantaneous with just a 
click of the share button. The dissemination of rumours 
poses a significant challenge to governments and can 
have detrimental effects on societal well-being. In recent 
times, numerous mathematical models have emerged 
to explain the dynamic behavior of rumor propagation. 
These models offer insights into various phenomena, 
such as information dissemination, viral marketing, 
and panics triggered by epidemics or emergencies 
(Daley & Kendall 1964; Maki & Thompson 1973; 
Zan et al. 2014). Among the references cited, many 
researchers that modelled the spread of rumour gave 
credit to the work of Daley and Kendall (1964). They 
have adopted the epidemiological model in modelling 
the spread of rumour. The model is known as DK 
model and categorizes the population into three distinct 
groups i.e., the ignorant (those initiating rumors), 
spreaders (those disseminating the rumor), and stiflers 
(individuals aware of the rumor but choose not to 
spread it). However, a limitation of the DK model is 
its assumption that all ignorant individuals invariably 
become spreaders upon hearing a rumor which does not 
always hold true. To address this, Maki and Thompson 
(1973) expanded upon the DK model, introducing the 
MT model, which offers a more nuanced interaction 
among the three groups: ignorant, spreaders, and 
stiflers. Despite these advancements, both the DK 
and MT models lack consideration for the topological 
characteristics inherent in social networks, making them 
less suitable for capturing the complexities of rumor 
propagation on large-scale social networks (Zan et al. 
2014). As rumor propagation occurs within complex 
networks, Zanette (2001) extended the DK model to 
better capture this complexity. Several researchers 
have since incorporated various mechanisms into 
epidemiological models to mitigate its impact using 
control mechanisms. Among the references cited 
therein are modelling the rumours in the presence of 
the mechanism of incubation (Al-Tuwairqi, Al-Sheikh 
& Al-Amoudi 2015), the mechanism of forgetfulness 
(Zhao et al. 2013), the mechanism of hesitation (Xia et 
al. 2015), the mechanism of punishment and control by 
government (Li & Ma 2017; Zhao & Wang 2014), the 
mechanism of memory effect (Zhang & Xu 2015). Li et 
al. (2021) have extended DK model to its corresponding 
stochastic counterpart and added two distinct inhibiting 
and attitude adjusting mechanisms to the model. They 

analyse a deterministic and stochastic model for the 
spread of rumours in a homogeneous social network. 
For simplicity, Li et al. (2021) focus solely on rumors 
spreading through direct human contact, categorizing 
individuals into three compartments of newcomer 
(S), spreader (I) and stifler (R). Zhao et al. (2013) 
explored the dynamics of a rumor-spreading model 
with four compartments, taking into account forgetting 
and remembering mechanisms within inhomogeneous 
networks. The model by Li et al. (2021) have ignored 
resisted compartment. In this research, we employed 
the compartmental model introduced by Zhao et al. 
(2013) within a homogeneous network, integrating 
the two adjusting mechanisms highlighted by Li et al. 
(2021). Our model incorporates the resisted (recovered) 
compartment, representing individuals who, despite 
hearing the rumor, resist spreading it or adjust their 
attitude due to the mechanisms. Therefore, this research 
introduces an epidemiological framework termed 
Susceptible-Hesitate-Propagate-Resisted (SHPR) that 
incorporates two inhibitory and attitude-adjusting 
mechanisms within homogeneous networks.

This paper is organised as follows. Next section 
provides the deterministic rumours spreading model 
of SHPR with two inhibiting and attitude adjusting 
mechanisms. Qualitative analysis of the model is given 
in subsequent section which includes the basic influence 
number, positivity of the solution and the stability 
at equilibria. In the section that follows, numerical 
simulations are performed to illustrate the validity of 
the theoretical results. Concluding remarks are given in 
the last section.

MATHEMATICAL MODEL

In this section, we describe the formulation of susceptible-
hesitate-propagate-resisted (SHPR) rumour spreading 
model with adjusting mechanisms. Let N(t) denote 
the total population at time t. As indicated in Figure 
1, the population is divided into four compartments, 
the susceptible class (S), the ignorant class (I), the 
propagating class (P) and the hesitates class (H). Let 
denote the number of susceptible, propagates, ignorant 
and hesitated at time t as S(t), P(t), I(t) and H(t), 
respectively. Then, the total population at time t is

	 (1)( ) ( ) ( ) ( ) ( )N t S t P t I t H t= + + +  
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Figure 1 shows the structure of the SHPR model with 
adjusting mechanism, U for the rumour spreading.

As illustrated in Figure 1, the following assumptions 
are made for this model: 1. Any person added to the 
social network population is susceptible. 2. The rumour 
spreads in a population with constant immigration 
and emigration rate. The recruitments into susceptible 
class, S occurs at a positive constant rate Γ, while each 
compartment is characterized by a constant leaving rate 
of μ. 3. Upon hearing a rumour, the susceptible, S may 
subsequently display two different attitudes. The first 
attitude is denoted by I that is referred to the individuals 
who have heard the rumours but hesitate to spread it 
(ignorance). Meanwhile the second attitude is denoted 
by P nodes is those who believe the rumours and spread 
it actively. 4. Those who are ignorance will move from 
S to I nodes with the probability, (1-θ) and adjustment 
function of f(U), resulting from the adjustment 
mechanism of governmental work. Ignorant population 
may change their attitudes and become spreaders with 
the constant rate of τ. 5. Those who actively spread the 
rumours will move from S to P nodes with the probability, 

θ and adjustment function of f(U), resulting from the 
adjustment mechanism of governmental control. The 
newcomer from I nodes who have changed their attitudes 
and actively spread the rumours will be recruited to P 
nodes with the constant rate of τ. 6. The newcomer from 
𝑃 and 𝐼 nodes will enter the 𝐻 (hesitated/ resisted) node 
with the function rate of 𝑔(𝑈) and constant rate of 𝛽, 
respectively. H nodes refer to the recover individuals. 
It is also known as stiflers. 7. The constant r is the 
government control rate for adjusting and inhibiting 
mechanisms and e is represents a decay rate mechanism. 
The functions f(U) and g(U) characterize the impact 
of rumour control mechanisms, which influence the 
attitudes of the spreaders within propagation nodes. The 
recruitment of the individuals from S to I and P nodes is 
subjected to the adjustment function of f(U). The constant 
δ and K quantify the utilization of the inhibitor, with δ 
representing the maximum uptake rate of P and K is a 
half-saturation parameter. 8. The movement of individuals 
from one compartment to another is unidirectional, i.e., 
the flow shown in Figure 1 is irreversible.

FIGURE 1. Schematic diagram of the flow of rumour spreading with two 
adjusting mechanisms
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TABLE 1.  Description of the variables and parameters

Variables/ Parameters Description

S Susceptible class

I
The latent (ignorance) class i.e., the class belong to the individuals who have 
heard the rumours but ignore it

P
The propagating class i.e., the class belong to the individual who believe the 
rumours and spread it actively

U Adjustment mechanism 

H
The resisted (recovered) class which is the class for those who are from 
Ignorance class have heard the rumour but resist and do not spread it/ those who 
have changed the attitude due to the adjustment mechanism

Γ The rate of the recruitments into susceptible class 

μ Leaving rate for each compartment

θ The rate of those who actively spread the rumours

r The rate for adjusting and inhibiting mechanism

e A decay rate mechanism

δ The maximum uptake rate of 

K Half-saturation parameter

τ
The constant rate of the hesitate population who change their attitudes and 
become spreaders 

β The rate of newcomer from  I node to the H node

Based on the schematic diagram in Figure 1, we 
obtain the following system of differential equations:

(2)

We assume that:
A1: The function :[0, )f R∞ →  satisfies
	

1.  f(U) ≥ 0, f (0) = 1
	

2.  f is non-increasing on [0,∞).

 A2: The function :[0, )g R∞ →  satisfies
	

1.  g(U) ≥ 0
	

2.  g is non-decreasing on [0,∞).

QUALITATIVE ANALYSIS

The initial conditions are assumed to be non-negative 
because the model portrays human population dynamics 
concerning the propagation of rumours. Now, it suffices 
to show that the solutions of the model are also positive 
and bounded.

Theorem 1 Let ≔ {(S, I, P, U, H)∈Theorem 1 Let 𝐺𝐺 ≔ {(𝑆𝑆, 𝐼𝐼, 𝑃𝑃, 𝑈𝑈, 𝐻𝐻) ∈ ℝ5: 𝑆𝑆0 > 0, 𝐼𝐼0 > 0, 𝑃𝑃0 > 0, 𝑈𝑈0 > 0, 𝐻𝐻0 > 0 }, then the 

solution of the model (2) for {𝑆𝑆, 𝐼𝐼, 𝑃𝑃, 𝑈𝑈, 𝐻𝐻} is positive invariant and bounded for all 𝑡𝑡 ≥ 0. 

Proof From equation (1), we have 

( ) ( ) ( ) ( ) ( ) ( )dN t dS t dP t dI t dH t
N t

dt dt dt dt dt
= + + + =  −  

which implies that 

( ) ( )0 tN t N e 

 
−  

= − + 
 

 

for all 0.t  We obtain ( ) ( ) ( ) ( )0 .S t P t I t H t



 + + +  This ensures the boundedness of 

𝑆𝑆(𝑡𝑡), 𝑃𝑃(𝑡𝑡), 𝐼𝐼(𝑡𝑡) and 𝐻𝐻(𝑡𝑡). Please note that 

( )
( )

0
rU t
e

rPdU t e
rdt K
e



=

 
 
 = − 
+

 in which prevents the function of 𝑈𝑈(𝑡𝑡) from growing indefinitely. 

This implies that the function 𝑈𝑈(𝑡𝑡) is decreasing over time and approaching the constant value 

of .r
e

 Hence, the function of 𝑈𝑈(𝑡𝑡) is bounded.  

: S0 > 0, I0 > 0, P0 
> 0, U0 > 0, H0 > 0 } then the solution of the model (2) 
for  is positive invariant and bounded for all t ≥ 0.

( )( ) ( )

( ) ( )( )

( ) ( ) ( )

( )

1

1 (2)

dS I P Sf U S
dt
dP SPf U I g U P
dt
dI SIf U I
dt
dU PUr eU
dt K U

dH I Pg U H
dt

  

  

   



 

=  − − + −

= + − +

= − − + +

= − −
+

= + −
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Proof From equation (1), we have

which implies that

for all t ≥ 0. We obtain ( ) ( ) ( ) ( )0 .S t P t I t H t
µ
Γ

≤ + + + ≤

This ensures the boundedness of S(t), P(t), I(t) and H(t). 

Please note that 
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( )
( )

0
rU t
e

rPdU t e
rdt K
e



=

 
 
 = − 
+

 in which prevents the function of 𝑈𝑈(𝑡𝑡) from growing indefinitely. 

This implies that the function 𝑈𝑈(𝑡𝑡) is decreasing over time and approaching the constant value 

of .r
e

 Hence, the function of 𝑈𝑈(𝑡𝑡) is bounded.  

in which 

prevents the function of  from growing indefinitely. This 
implies that the function U(t) is decreasing over time 
and approaching the constant value of .r

e
 Hence, the 

function of  U(t) is bounded. 
The state variables S, P, I, U and H are remains within 
specific region of a positive invariant set of 

This ensures that the solution of S, P, I, U and H 
remains positive for all t ≥ 0.

The Basic Influence Number
The system (2) has a rumour-free equilibrium, E0 of

The dynamic of the model is investigated using the 
next generation method. Let consider the infected-
like compartment of P, I, and the uninfected-like 
compartment is given by S,U and H. Then we apply 
the next generation method to find the basic influence 
number, R0. Let denotes 

Then, the system (2) can be written as

This yield

in which

Then at rumour-free equilibrium we have

The basic influence number that is a threshold parameter 
for the stability of the system (2) can be obtained by 
determined the spectral radius of matrix FV-1 given by
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𝜇𝜇  𝑎𝑎𝑎𝑎𝑎𝑎 0 ≤ 𝑈𝑈 ≤ 𝑟𝑟

𝑒𝑒 }.

0 ,0,0, ,0rE
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 
=  
 
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R0 provides insight into how the value r influences 
the potential of rumour spreading. The parameter r 
corresponds to factors such as mitigation factors or 
allotted budget by government to control the spread of 
the rumour. Under assumption A1, the numerator is non-
increasing function of r i.e., the function rf

e
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    rg
e

 
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    decreases 

or remain constant as r increases. Assumption A2 imply 
that the denominator is an increasing function of r i.e., 
the function rf

e
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  increases as r increases. This imply 

the basic influence number R0 is non-increasing function 
of r. It can be concluded that as more budget is allocated 
for government control mechanism will lead to the less 
influence of the spreader in the system, hence able to 
control the spreading of the rumours.  
Next, we investigate the dynamic of the system (2) at a 
positive equilibrium point.

The Existence of a Positive Equilibrium
The positive equilibrium, ( )* * * * * *, , , ,E S P I U H=  let the 
system (2) take the form of

    

 (3)

By algebraic manipulation, we obtain

	

 (4)

  The Jacobian matrix at J(E*) is given by

The Stability at Equilibria
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is locally asymptotically stable if
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We observe that 1 2 3, , 0,λ λ λ <  the remaining 4λ  and 5λ
are investigated as follows. The eigen value of 4λ can 
be written as

For 0 1,R <  then 4 0λ <  which imply 0 ,0,0, ,0rE
eµ

 Γ
=  
 

is locally asymptotically stable. Note that E0 is unstable 
if R0 > 1 .

The remaining 5λ  can be written as follows:
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 This imply if then is locally 

asymptotically stable. 

Next, we investigate the stability of the system (2) at 
positive equilibrium using the similar way as for the 
stability at rumour-free equilibria. For simplicity, the 
following notations are introduced.

The characteristic equation is

			   (3)

where 

By Routh-Hurwitz criterion, a tabular method is applied 
to determine the stability of the polynomial (3). The 
system (2) is stable if the Routh-Hurwitz coefficients
  

NUMERICAL SIMULATION

The numerical simulation is performed to support the 
qualitative analysis of system (1). The initial values and 
parameter values are indicated in Table 2. The Markov 
Chain Monte Carlo (MCMC) method, as studied by 
Fahmi, Norhayati and Noryanti (2021), is employed 
to estimate the parameter values of ,θ τ  and ,β  while 
other parameters are sourced from Chen (2019) and Li 
et al. (2021). 

The simulated results of evolution of the newcomer 
in susceptible class, those who are ignorant, the spreader, 
inhibitor (government mechanism) and the hesitated 
class is depicted in Figures 2 and 3. According to the 
theoretical finding, the rumour propagation will fade 
out when the basic influence number, Λ < R0 < 1. For the 
parameter values given in Table 1, the values of 0 0.86R =  
and 3.6.Λ = − The evolution density of the spreaders is 
influenced by the government control mechanism given 
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by the state of 𝑈(𝑡) (Figure 2). In Figure 3, the density 
of the spreaders, 𝑃(𝑡) declines to zero, hence indicate 
that the propagation of the rumour will disappear finally 
over time. The density of newcomers to the state of 𝑆(𝑡) 

is sharply decrease for the time interval [0, 5]. As time 
increases it reach the respective equilibrium states. The 
latent and hesitating states also dies out indicate that the 
spread of the rumour is controllable.

TABLE 2.  Initial values and parameter values

Variables/ Parameters Values Source

S(0) 3.0 Li et al. (2021)
H(0) 1.0 Li et al. (2021)
P(0) 1.0 Li et al. (2021)
U(0) 1.0 Li et al. (2021)
R(0) 1.0 Li et al. (2021)
f(U) 0.5(1 + e-U) Li et al. (2021)

g(U) 0.2 ( 𝑈𝑈
1 + 𝑈𝑈) Li et al. (2021)

U [0,100] Li et al. (2021)
Γ (2,6) Chen (2019)
μ 0.7 Chen (2019)
θ 0.8 MCMC
r 1.0 Fixed
e 0.5 Fixed
δ 0.5 Li et al. (2021)
k 1.0 Li et al. (2021)
τ 0.02 MCMC
β 0.05 MCMC

FIGURE 2. Inhibitor mechanism, U (t)
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Next, we investigate the stability of the solution 
at positive equilibria points. In Figures 4 and 5, the 
control mechanism at initial time, U(0) = 3, the control 
mechanism rate, 𝑟 = 3 and the basic influence number 
is R0 = 1.995>1. In this case the coefficients of the 
characteristic equations at rumour positive equilibrium 
is a0 = 0.00396, a1 = 0.31620, a3 = 0.015549, and a4 = 
4.013801. Based on the theoretical finding, the system of 
Equation (2) is locally asymptotically stable. In Figure 
4, the government control mechanism 𝑈(𝑡) increase 
sharply for the time interval [0, 10] and then reach the 
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FIGURE 3. The population density of the newcomer in susceptible class, 
latent class, propagating class and the resisted class

equilibrium state of 5.9. The population of propagating 
individual will maintain at a positive constant, which 
means that the rumour propagation will be permanent but 
at very low density (Figure 5). Latent population density 
increases at earlier time, then decreases and maintain 
at a positive equilibrium state. It shows that as more 
effort the government put to control the spread of the 
rumours (allotted budget), the spread of the rumours will 
eventually die out. More individual will move to latent 
compartment due to the governmental control mechanism 
and then reach the respective equilibrium states.

FIGURE 4. Inhibitor mechanism, 𝑈(𝑡)
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Next, the rate of τ is varies as depicted in Figure 6(a), 
Figure 6(b) and Figure 6(c). 
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FIGURE 6a. U (0) = 3 and τ = 0.4, R0 = 2.8155
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FIGURE 5. The population density of the newcomer in susceptible class, latent 
class, propagating class and the resisted class for U (0) = 3 and r = 3, R0 = 1.995
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Based on Figure 6(a) - Figure 6(c), for the value of 
τ < 1.0,  the population of propagating individual will 
maintain at a positive constant, which means that the 
rumour propagation will be permanent at the respective 
equilibrium states. Next, the parameter rate of τ is varies 
such that τ >1.0 as depicted in Figure 7(a) and Figure 
7(b).

In Figure 7(a), the population of propagating 
individuals sharply increases, indicating a rising 

trend in rumour spreading for τ = 1.0. Conversely, for 
τ = 1.5, the basic influence number is high, denoted as 
R0 = 4.1355. The simulated results in this scenario show 
an instability of the solution at the equilibrium point, as 
illustrated in Figure 7(b). This leads to the conclusion 
that when the rate of the hesitant population transitioning 
to spreaders surpasses 1.0, the simulated results exhibit 
an increasing trend in propagation nodes and instability 
in the solution.

FIGURE 6b. U(0) = 3 and τ = 0.6, R0 = 3.0555
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FIGURE 6c. U(0) = 3 and τ = 0.6, R0 = 3.2955 

0 10 20 30 40 50 60

Time, t

0

0.5

1

1.5

2

2.5

3

3.5

Po
pu

la
tio

n 
D

en
si

ty

S

I

P

H



730	

FIGURE 7b. 𝑈(0) = 3 and 𝜏 =1.5, R0 = 4.1355
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FIGURE 7a. U(0) = 3 and τ = 1.0, R0 = 3.5355
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CONCLUSION

This study proposed a mathematical model of rumour 
spreading by extending the traditional Daley and Kendall 
(1964) model with the effects of the attitude control 
mechanisms.  The explicit expression of the threshold 
parameter, the basic influence number is calculated. 
Then, the stability solution at disease free equilibrium 
and at rumour-prevailing equilibria are computed. R0 
provides insight into how the value r influences the 
potential of rumour spreading. This imply the basic 
influence number R0 is non-increasing function of r. 
The parameter r mitigation factor to control the spread 
of the rumour. It can be concluded that as more budget 
is allocated for government control mechanism will 
lead to the less influence of the spreader in the system, 
hence able to control the spreading of the rumours. 
Furthermore, the spread of the rumours also being 
influenced by the constant parameter τ. For the value of 
τ > 1.0, the simulated results exhibit an increasing trend 
in propagation nodes and instability in the solution.
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