Learning analytic framework for students’ academic performance and critical learning pathways

Lyn, Jessica Tan Yen and Goh, Yong Kheng and Lai, An Chow and Ngeow, Yoke Meng (2024) Learning analytic framework for students’ academic performance and critical learning pathways. Journal of Quality Measurement and Analysis, 20 (2). pp. 127-147. ISSN 2600-8602

[img] PDF
2MB

Official URL: http://www.ukm.my/jqma

Abstract

In the domain of higher education, the need to leverage data-driven insights for understanding and enhancing student academic performance is becoming increasingly critical. To address this, a unified learning analytics framework is proposed, aimed at deciphering complex student academic journeys and fostering data-informed decision-making for educational institutions. This framework’s methodology involves several key steps, starting with standardized data collection and pre-processing. Subsequently, dimensionality reduction techniques like Principal Component Analysis (PCA) and Non-negative matrix factorization (NMF) are applied to capture the most influential course components and grade information. The resulting reduced dataset is then subjected to various clustering algorithms, including partition-based clustering (K-means), hierarchical clustering, and density-based clustering (DBSCAN). These algorithms group students based on academic performance and course profiles, facilitating the identification of clusters with similar characteristics and academic trajectories. Furthermore, a collective network graph is constructed to analyze course relationships and program pathways, identify critical courses, and reveal influential factors affecting student performance and outcomes. This network analysis enables educators to identify bottleneck courses and areas that may require additional support or improvement, fostering a data-driven approach to curriculum design and enhancement. To showcase the framework’s efficacy, a case study was conducted on 3550 undergraduates from an engineering program at a Malaysian private university. The student dataset used in this study spans from 2005 to 2021, covering a wide range of academic years for analysis. The results demonstrate the framework’s capability to unveil valuable insights into students’ academic journeys, revealing key factors contributing to their success. By providing a holistic perspective of student performance and course interactions, the proposed learning analytics framework holds great promise for educational institutions seeking data-driven strategies to enhance student outcomes and optimize learning experiences.

Item Type:Article
Keywords:Learning analytic framework; Principal Component Analysis (PCA); Non-negative Matrix Factorization (NMF); Clustering; Network graph
Journal:Journal of Quality Measurement and Analysis
ID Code:24109
Deposited By: Mr. Mohd Zukhairi Abdullah
Deposited On:04 Sep 2024 08:13
Last Modified:06 Sep 2024 00:58

Repository Staff Only: item control page