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ABSTRACT

In this paper, a new transmuted three-parameter Lindley distribution (TTHPLD) is established using the transmutation
map method, which includes the Lindley distribution, two-parameter Lindley distribution, transmuted two-parameter
Lindley distribution and three-parameter Lindley distribution as special cases. The statistical properties of the TTHPLD
model, which are based on moments, order statistics, hazard rate functions, reliability functions, and Renyi entropy,
have been studied. Moreover, the maximum likelihood estimators (MLEs) of the TTHPLD are obtained via differential
evolution algorithms, and a simulation study is conducted to evaluate the consistency of the MLEs. Finally, the
proposed distribution is applied to a real dataset and compared with other well-known models.

Keywords: Differential evolution algorithm; generalized Lindley distribution; hazard rate function; Renyi entropy;
maximum likelihood estimation

ABSTRAK

Dalam kertas ini, sebuah taburan Lindley tiga-parameter terbaharu (TTHPLD) yang ditransmutasikan telah
dibangunkan menggunakan kaedah pemetaan transmutasi, yang merangkumi taburan Lindley, taburan Lindley
dua-parameter, taburan Lindley dua-parameter tertransmutasi dan taburan Lindley tiga-parameter sebagai kes
khas. Sifat-sifat statistik model TTHPLD yang berdasarkan momen, statistik perintah, fungsi kadar bahaya, fungsi
kebolehpercayaan, dan entropi Renyi telah dikaji. Selain itu, penganggar kemungkinan maksimum (MLE) bagi
TTHPLD diperoleh melalui algoritma evolusi berbeza dan kajian simulasi dijalankan untuk menilai kekonsistenan
MLE tersebut. Akhirnya, pengedaran yang dicadangkan ini diaplikasikan kepada set data sebenar dan dibandingkan
dengan model terkenal yang lain.

Kata kunci: Algoritma evolusi berbeza; anggaran kebolehjadian maksimum; fungsi kadar bahaya; entropi Renyi;
taburan Lindley teritlak

INTRODUCTION capture the nonnegative nature of claim amounts and the

The Lindley distribution (LD) proposed by Lindley decreasing hazard rates associated with certain types of
(1958) is a useful tool in statistical modeling for data claims. . _
with nonnegative values and decreasing hazard rates. ) 'If a rand.om variable X .fOUOWS t.h.e Llndl.ey
Its applications include survival analysis, reliability ~ distribution with parameter ¢, its probability density
engineering, actuarial science, and insurance claim function (pdf) and cumulative distribution function (cdf)
modeling. For example, in reliability engineering, LD  are defined as
is often used to model the failure times of mechanical 92

. ) . i 0)=—1+x)e % and F(x;0) =
components or the time to failure. Moreover, in actuarial f(x;60) 1+9( +2) and F(x;9)
science and insurance claim modeling, it can also (1+9+9x) _ox

1+6 !
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where x > 0 and 6 > 0. The structural properties,
estimations, and goodness-of-fit tests for the LD can
be found in Ghitany, Atiech and Nadarajah (2008).
Furthermore, they showed that the LD is superior to the
exponential distribution in terms of waiting time before
bank customer service.

In practical analysis, the collected data are often
heterogeneous, with various parts of the data following
different distributions. Although the LD is excellent at
modeling heavy-tailed data features with extreme values
or outliers, the distribution needs to be further expanded
to accommodate the heterogeneity of the data. Currently,
as a well-established distribution expansion technique,
the transmutation map method (Shaw & Buckley 2009)
is widely used to extend known distributions. These
distributions include the Rayleigh distribution and
transmuted Rayleigh distribution (Merovci 2013b), the
Weibull distribution and transmuted Weibull distribution
(Aryal & Tsokos 2011), the Pareto distribution and
transmuted Pareto distribution (Merovci & Puka 2014),
the Gompertz distribution and transmuted Gompertz
distribution (Moniem & Seham 2015), the Lindley
distribution and transmuted Lindley distribution (Al-
Khazaleh, Al-Omari & Al-Khazaleh 2016; Merovci
2013a), the normal distribution and transmuted normal
distribution (Ieren & Abdullahi 2020), and the geometric
distribution and transmuted geometric distribution
(Chakraborty 2015). In their analysis, the transformed
distribution can enhance data fitting and prediction.

Generally, a random variable X is said to have a
transmuted distribution if its cdf is given by

F) =1+ D6E) -G 121 <1,

with the corresponding pdf defined as

f) =gM)[1+2-226()],

where G(x) represents the cdf of the base distribution and
pdfs f{x) and g(x) correspond to the cdfs F(x) and G(x),
respectively. Hence, the pdf and cdf of the transmuted
Lindley distribution (TLD) proposed by Merovci (2013a)
are as follows:

0? 0+1+06x
. - -0x _ _ —0x
f(x;6,2) 9+1(1+x)e (1+A 2/1(1 711 ))

F(x;0,2) = ETIE

7207 (%% = 1)0 + (7 — 0x — 1)) (**(1 + 6) + (1 + 6 + 6x)2)

where x > 0, § > 0 and |A| < 1. Moreover, Abouammoh,
Alshangiti and Ragab (2015), Ekhosuehi, Opone and
Odobaire (2018), Shanker and Rahman (2020) and
Shanker and Sharma (2013), proposed various two-
parameter Lindley distributions. As a representative
distribution with wide application, the pdf and cdf of the
two-parameter Lindley distribution (TPLD) proposed by
Shanker and Sharma (2013) with shape parameters 0,a
are given by

flx;a,0) = %(1 + ax)e % and F(x; a,0) =

O+atabx _gy
O+a

1-—

’

where x>0, 6> 0 and o 8 > -1.

According to real data analysis, the TPLD provides
closer fits than does the LD. Hence, Al-Khazaleh, Al-
Omari and Al-Khazaleh (2016) derived a new transmuted
two-parameter Lindley distribution (TTPLD) based on
the TPLD. The pdf and cdf of the TTPLD, with shape
parameters 6, o, A, are given by

62 0+a+ab
[i8,,) = 5o (1 + ax)e™® [1 . 2,1(1 _lrard xe*SX)],

6+a

e 20%[ (%% —1)0 + a(e® — 0x — 1)][e®*(a + 0) + (a + 6 + abx)A]

F(x;0,a,1) = @16y

where x > 0, > 0 and a > -6. Moreover, Khazaleh et al.
(2016) showed that the TTPLD offers a superior fit to the
data compared to the basic LD and TPLD.

In recent years, a new more flexible three-parameter
Lindley distribution (THPLD) proposed by Shanker et
al. (2017) and its extension (Shanker, Shukla & Mishra
2017) and applications (Al-Omari, Ciavolino & Al-Nasser
2020; Thamer & Zine 2023) have attracted increased
research interest. The pdf and cdf of the THPLD, with
shape parameters 6, a and £ are defined as follows:

2

fx;0,a,B8) = 70 +a(ﬁ + ax)e %% and
) _ L6 + a + abx —ox
F(x,H,a,ﬁ)_l—(—ﬁg_l_a )e ox.

where x, 6, >0 and f§ 6 + a > 0. Note that the pdf of the
THPLD may not satisfy the regularization condition of
probability. To solve this issue, here we use the parameter
space Q = {f:f>-a /(1 + 0)} to replace the parameter
space Q' = {f:f > -a / 0} of § in Shanker et al. (2017).



To obtain a new more flexible and adaptable model, we
want to extend the three-parameter Lindley distribution
by using the transmutation map method. In this paper,
several important mathematical properties and estimation
methods are presented.

The paper is structured as follows: In the next
section, a new flexible model is proposed. Structural
properties such as moments and associated measures,
order statistics, and reliability and hazard rate functions
are derived subsequently. In the section that follows, the
Renyi entropy in information theory is calculated. Next,
the maximum likelihood method is used to investigate
the parameter estimation. After that, a simulation study is
conducted to evaluate the proposed model. Subsequently,
areal data example is used to demonstrate the application
of the new model. Finally, the conclusions are presented
in the last section.

THE TRANSMUTED THREE-PARAMETER LINDLEY
DISTRIBUTION

A random variable X is said to have a transmuted three-
parameter Lindley distribution (TTHPLD) if its cdf is
given by

1429

(@ + BO + abx)e=0%]’

N A (a+ 6 + abx)e 0 1l
=01+ ——]— [— «tpe

a+ [0

B e'zg"[(e(”‘ —1)B6 + (e — 6x — 1)][e9"(a +B6) + (a+ po + an)A]
- (a+po)* ’

and the corresponding pdf of TTHPLD is given by

o)

where a, 5, 6 and 4 are unknown parameters of the new
distribution. Moreover, a, ff and 4 are shape parameters,
and 0 is the scale parameter. For A=0and =1, TTHPLD
reduces to the three-parameter Lindley distribution
(THPLD) and the transmuted two-parameter Lindley
distribution (TTPLD), respectively. Moreover, for 1 = 0
and f= 1, TTHPLD reduces to the two-parameter Lindley
distribution (TPLD). For A =0 and o, f — 1, TTHPLD
tends to follow the Lindley distribution (LD).

Figures 1 and 2 display the pdf and cdf of the
TTHPLD (6,a,p,4) for various values of 6,a,f and 4,
respectively.
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FIGURE 1. The pdf of the TTHPLD for various values of 6, o, § and 4.
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FIGURE 2. The cdf of the TTHPLD for various values of 6, o,  and /.

STRUCTURAL PROPERTIES OF THE PROPOSED
DISTRIBUTION
MOMENTS AND ASSOCIATED MEASURES

oo ezetx
= j s a{(l —Dpe % + (1 - Daxe % +
0

In this section, the moment generating function, r-th 2BAe 0% 4 242 (M) xe—26x
moment, coefficient of variation, skewness and kurtosis po +a
are derived. 2
L 22607, s }dx
B+«

Theorem I The moment generating function of the

TTHPLD is obtained by 62 °° .
= (1-2 ~(0-txq 1-2 f
a0 e rdrat- |
0?2 (B—AB a-—2Aa 228 420ap + 22a?  40a?
My (t) = ( + + + + ) oo
X BO+a\ 6—t  (6-t)? (20—-10) (26 —t)? (26 —t)3 ve-O-O% gy 4 sz - (20-0% gy
0
Y tx €] 2 o
Proof My (t) = fo e f(x)dx +2ad 2p6 + aJ‘ re-(20-0x gy + 2M0a f
po+a ), B+ al,

xze—(ze—t)xdx }



420af + 22a?
(20 — t)?

62 (ﬁ—m a—la 2B

_ N 4/19(12)
BO+a\ 6—-t (6—-1t)> (260-1t)

Hence, the proof is complete.

Theorem 2 The r-th moment of the TTHPLD distributed
random variable is given as

2 —
oy = 2 {(B ., 2P

Bo+a) |\ ot (20)r+1>r(r O+

220a?
(BO+ a)(26)7+3

a—Aa  4AB6a + 21a?
+( Gzt rr+2) ¢

(B0 + @)(26) 2
Proof. E(X") = [

0

r(r+3)

[oe]

x"f(x)dx

2

*© 6 RO+ a + abx
= T~ -ox (1 ,1—2/1(1—7 *GX) dx.
J; x ﬁg_'_a(ﬁ‘f'flx)e ( + Pt a e X
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=— (1 — D)x"Be %dx + f (a — Aa)x" e % dx +
B+« {fo o

28 fow xTe 2%dx 4 2al f:’ Zfea:fx”ie‘ze"dx +
o0 2
L ;29_;2‘1 xr+2e—28xdx }
~ B -8 218
=0 {((/30 T (8o + a)(ze)rﬂ) Fe+b+
2262
Gorar@ey Y
a—Aa 4B0a + 21a? r )
+ <(/36 Y62 (GO + a)Z(ze)r+2> r+2) }

220a?
(BO + a)(20)7+3

)F(r+1)+ I'(r+3)

(ﬁg + a,) 9T+1 (29)T+1
a—la
+ 8r+2 +

Hence, the proof is complete.
Simple computations yield the first four raw
moments of X ~ TTHPLD(0, a, f, 1) as follows:

__ e {(ﬁ—/w+ 214

4AB0a + 21a?
®o+ a)(ze)m) re+ }

al(5a +4B0) + 8a(l — D) (a + BO) + 280(2 — 1) (a + BO)

K=EO = 46(a + BO)?

26-03)
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3aA(3a + 2B6) + 24a(1 — N)(a + £O) + 2B86(4 — 31)(a + B6)

My =EX?) = 40%(a 1 BO)?

3(aA(7a + 440) + 32a(1 — D (a + pO) + B8 — 7)) (a + $6))

My = EX) = 40%(a 1 BO)?

3 (5aA(2a + p8) + 80a(1l — A)(a + fO) + fO(16 — 152) (a + B6))
260%(a + §6)? ’

u,=EX" =

and the variance of X is
02 = Var(X) = E(x?) - (E(0)’

_ 4(a+p6)? - (3aA(3a + 280) — 24a(a + fO)(A — 1) — 2B6(a + f6) (34 — 4))
- 1662(a + f6)*

(—aA(5a + 4p8) + 8a(a + fO)(A — 1) + 2B0(a + BO)(A — 2))2
1602 (a + f6)*

Furthermore, the coefficient of variation (CV), skewness
and kurtosis of the distribution work out to

CcV =

(o2
o
EX —w)® _ps—3uap+24°

Skewness = 3 3
o o

)

EX =" _ pa— 4uisp + 6upp® + 3

Kurtosis =
ot ot

The expressions for CV, skewness and kurtosis are large
and complicated; however, their values for different
parametric values can be derived and are displayed in
Table 1.

According to the data in Table 1, as A increases,
both the mean and variance values consistently decrease.
Additionally, the CV and kurtosis follow similar trends,
initially increasing and then decreasing. Notably,
skewness demonstrates multiple changes as /4 increases;
it first decreases, then increases, and finally continues
to decrease. These findings indicate that the TTHPLD
distribution is asymmetric in nature.

ORDER STATISTICS

Order statistics play a vital role in various fields of
training and statistical theory, offering a wide range
of applications in life testing and reliability analysis.
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TABLE 1. Descriptive statistics of TTHPLD with =2, a=f=3for-1<A<1

A 1 o* Cv Skewness Kurtosis
-1 0.9861 0.4651 0.6916 1.4076 -20.1779
-0.9 0.9542 0.4666 0.7159 1.4074 -16.7954
-0.8 0.9222 0.4662 0.7404 1.4167 -13.9072
-0.7 0.8903 0.4637 0.7648 1.4345 -11.4189
-0.6 0.8583 0.4591 0.7894 1.4602 -9.2556
-0.5 0.8264 0.4525 0.8140 1.4930 -7.3570
-0.4 0.7944 0.4439 0.8386 1.5327 -5.6739
-0.3 0.7625 0.4332 0.8632 1.5790 -4.1653
-0.2 0.7306 0.4205 0.8876 1.6317 -2.7970
-0.1 0.6986 0.4057 0.9117 1.6908 -1.5395

0 0.6667 0.3889 0.9354 1.7563 -0.3673
0.1 0.6347 0.3700 0.9584 1.8282 0.7420

0.2 0.6028 0.3492 0.9803 1.9065 1.8085

0.3 0.5708 0.3262 1.0006 1.9908 2.8488

0.4 0.5389 0.3013 1.0185 2.0801 3.8745

0.5 0.5069 0.2743 1.0330 2.1722 4.8866

0.6 0.4750 0.2452 1.0425 2.2620 5.8602

0.7 0.4431 0.2141 1.0444 2.3371 6.7028

0.8 0.4111 0.1810 1.0348 2.3676 7.1251

0.9 0.3792 0.1458 1.0071 2.2718 6.1814

1 0.3472 0.1086 0.9491 1.7815 0.1669




By examining the order statistics, researchers can
identify the minimum and maximum values, calculate
percentiles, estimate population parameters, assess
the accuracy of statistical models, and determine the
reliability of systems or products. Let X, X, ... X, be
the order statistics of the random sample X, X, ..., X
selected from a pdf and cdf f{x) and F(x), respectively.
The pdf of the jth order statistic X, is defined as
follows:

n o e
DG POV I = Pl G,

fup () =

forj=1,2, ..., n,hence we have the pdf of the jth TTHPLD
random variable X ;) as

(ax + B)6%e~%n!

fo® = G e v G - D1

(abx + a + O)e~*
(- omteine™y )

y (a(ex — e +1) - po(e™ — 1))(/1(a6x + a4+ BO) + (a + po)e™) &
- (a + pO)%e20*

(a + po)2e2ox

y (1 (a(Bx — e 4+ 1) — po(e’™ — 1))(A(a9x +a+p0)+ (a+ BG)eeX)>_j+n
+ ,

where x > 0, 8 > 0, a > -6. Moreover, the pdf of the
smallest order statistics X(l) =min {X, X,, ..., X } is
given by

2,-20x
fay() = fow(ﬁ + ax)(—Zl(—zsz —a—-pf0+(a+ 39)29") +(a+B9)(A+ 1)99")

o[ B9Y2e™ + (a(6x — e + 1) + BO(1 - ¢*) ) (A(abx + a + BO) + (a + BO)e™) i
(a + p6)*e? '

and the pdf of the largest order statistics X, =max X,
X,, ..., X } has the form as follows:

f%e?

Ox
Fo () = (';er(ﬁ + ax)(=2A(~abx — a — BO + (a + BO)e®%) +

(a + pOA + 1))

(a(bx = % + 1) + p6(1 - €%%)) (A(abx + @ + B6) + (a + f6)e’) "
x| = (a + p6)%e26x .
RELIABILITY ANALYSIS

Reliability and hazard rate functions are fundamental
tools in reliability analysis and are widely employed

1433

in fields such as finance, engineering, medicine, and
insurance. Their applications span various industries
and disciplines, enabling informed decision-making, risk
assessment, and proactive maintenance strategies.

The reliability function, denoted as R(¢), measures
the probability of an item or system not failing before
a specified time t. Here the reliability function of the
TTHPLD is given by

R(t)=1—F(t) =

(a + p6)%e?? + (a(t@ —e?+1)+po(1— e‘g)) (A(ath + a + BO) + (a + pO)e'?)

(a + ﬁe)zezts

Moreover, the hazard rate function, denoted as
H(t), is another important concept in reliability theory.
It measures the probability of failure occurring at time
t, given that the item has survived until that time. The
hazard rate function is also known as the failure rate or
the instantaneous failure rate. It quantifies the rate at
which failures occur per unit of time and is crucial for
understanding the failure characteristics of a system.
Here the hazard rate function of the TTHPLD is defined as

frrawn ()

h(t) = 1 = Frrup(t)

02(at + B)(—24(—atd —a — O + (a + p8)e?) + (a + fOI(A + 1e*?)

= (a + BO)2e2t? + (a(th — et® + 1) + fO(1 — et0))(A(atf + a + O) + (a + fO)et?)’

Figure 3 displays the shape of the hazard rate
function of the TTHPLD when a = =2 and 6 =1 for
different values of A.

RENYI ENTROPY

Renyi entropy is a concept in information theory that
extends the notion of entropy to measure the amount of
uncertainty or randomness in a probability distribution.
A large entropy value indicates greater uncertainty in
the data. Unlike Shannon entropy, which is a single
value, Renyi entropy is a family of entropy measures
parameterized by a parameter, denoted by p. Moreover,
the Renyi entropy of a continuous random variable X is
defined as

1 [0
h(#) = 7= log ( | f(x)”dx>

where p >0 andp # 1.
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abx

Theorem 3 The Renyi entropy of the TTHPLD random
variableis defined as

(1 + 21+

. Hence, we have
I,(p) = 5=log

2 \P
1) = Tlogi(Gi) @

2p—j-1

TG+ b+ 1)).

=0 i=0 k=0 -0 @o+a)" (i)

p p i itk p-jtk

(z S Y @) i)(ik)—EL e
14 ) A i

2 00(F) (1

1 o r
=1 log (BM)

© 92 i
Proof. [ (p) = ﬁlog{ ((m (B + ax)e x)

((1 +0) - 2)\(1 - we‘e")))pdx

BO+a

X

a-u

) = 3 () (1 +

1 - g’ x?;/e"’ex@ +
0

10

and 1 =-1,-

adx

)ie—eix
0+a :
i=0 B

o p . .
-0 @H(E @) ™)

0j=0
abx \if —6x i

+ _B9+a) (e )dx

p p

Lz ()6

j=0 i=0
abx \ir —6x ¢
Bo+a ) (e ) dx

2 \P®
—p8
:# log ((Bee+a) {(B + ax)pe P
adx | —6x\P
m)e ) dx).

By using the Binomial theorem,

21
a-n

(1+ (1+

14 . .
B+ o)’ =3 @) (),
j=0

Moreover,

(1+

adx
BO+a

)i - kéo @b ( Boé?a )k’

1) = %log{(ﬁg—;)p ) (%)l )@

=0 i=0

i

a- }\)pain*j X{ xjefpex % (i k) ( B:Ta )k(e_ex)idx

k=0



2

- rbosi() % 2

1(“{ — () @)

=0

BO+a

ik )OH'BP—}( B0 )k}o OO
0

Letu=6(p+i)xandx= 9(;+i),,thendu=0(p+i) dx
and dx = SoorD (p e Since

Tk —Bx(p+) oy

e e = e

1 .
= —[e(p+i)]’+k“ rg + k + 1).

Hence, we have

p p i
I(p)= 109(2 XX @)

=0 i=0 k=0

N 0HJrk p—j+kg2p=j=1 .
G+ k+ 1))
RN p(Be+a)p+k(p+i)j+k+1 (1 )

(ik)
Hence, the proof is complete.

MAXIMUM LIKELIHOOD ESTIMATION
In this section, we calculate the parameter estimators
for the TTHPLD (6, a, S, A). The maximum likelihood
estimation method is employed to obtain these
estimators ( §,@,B,1). Let X, X,, ..., X be a random
sample of size n from the TTHPLD; then the likelihood
function is given by

2

= )

i=1

(1+,1—2,1(1—

1+ ax,-)e‘g"i>

n

0> \"1

i=1 i=1

(1 +a-24(1- e‘9"i)).

Accordingly, the log-likelihood function can be written as

BO + a + afbx;
BO +a

BO + a + abx;
BO+
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2 \n M
16,0, B,A) = log (BGGM) il
L

i=1

(1 + A - 27\(1 mora

Be+a+a6xl, —Gxi
v — -1 X

n

(1 + axi)e_en‘EIXi

=P

={§: log(l—}—ocxi) —negxl& g: log

i=1 i=1 i=1

—0x abx. —Ox’
(1+7\—27\(1—e’— —e ))+

2
n lOg ( [36+a)

The score function is obtained by taking the first
partial derivative of the log-likelihood function with
respect to 6, o, S and 4, hence

OB _ 20 ne
EL) ) BO+a
n 2?\(1+7a§x"_a —— xe
0+ (Be+a) i
ny x — —
§1 ! g 1M 2he pon T
1= i=1 Be+a
n
olBaB) _  _n ¥ X, n
da - 6+« ~ o 1toax,
n 2 —Oxl abx —Oxl
( v Goray )
—le aexi —Oxl
i=1 1+}\—2}\(1—€ T )
n
al(0,a,8,1) — no _ Z
aB - BO+a ;
i=1
—0x
20An0 xe
ore 0 ’
abx e —ox
(a+B9)2(—2A(—a;Be+1—e ‘+A+1)
n —Bxl aexi —Oxl
ALO,aBA) Ze H250e 1

oA

—0x abx,  —6x)\ *
i=1 1+)\—27\(1—e ' —e ‘)

T Bo+a

The maximum likelihood estimators §, &, [? and A
can be obtained by setting the score function to zero
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and solving these equations simultaneously. Since the
maximum likelihood equations are nonlinear in nature,
the solutions (8, &, [)3,;1) have no closed form. These
equations can be solved numerically by using numerical
optimization algorithms. In this paper, the unknown
parameters 6, o, f and 4 are estimated by maximizing by
the differential evolution function of Python software.
Compared with the Newton-Raphson or quasi-Newton-
Raphson methods, which rely on gradient information
(e.g., first or second derivatives) from the log-likelihood
function, parameter estimation using differential
evolution algorithms does not require explicit solutions
for derivatives, which renders differential evolution
suitable for problems in which computational access to
gradient information is difficult or nonexistent.

RANDOM DATA GENERATION AND SIMULATION STUDY

In this section, we conduct a simulation study to generate
random variables from the TTHPLD. Subsequently, we
estimate the parameters using the maximum likelihood
estimation (MLE) method based on the generated
sample. To evaluate the accuracy and consistency
of the estimates, we calculated the bias and mean
squared error (MSE) of the MLE of the parameters. The
calculations pertaining to the study were carried out
using Python software, version 3.10, with the help of
self-programmed codes. The scipy.optimise package
in Python software was used to obtain the maximum
likelihood estimates of the parameters from TTHPLD.

Using the inversion method, we can generate
random numbers from the transmuted three-parameter
Lindley distribution via the following equation

e 20%[B (e — 1) + a(e® — 0x — 1)][e®*(a + BO) + Ala + O + abx)] _
(@ + o) -

where u is a uniformly distributed random variable and
U(0, 1). Given the sample size n, foreachu,i=1,2, ...,
n, we can solve the system of equations for x, (i = 1, 2,
..., n) simultaneously. Hence, one can generate random
numbers when a, f, § and 4 are known.

To be more informative, we can assess the
performance of MLEs & = (&, §, 8, 1). Without loss
of generality, for different parameter combinations,
the TTHPLD corresponding to the selected parameter
settings @ = (a, S, 0, A) has different shapes. Hence, we
consider @ = (a, S, 6, 1) = (2.0, 1.5, 1.0, 0.5), (1.5, 1.5,
0.5, 0.5), (1.5, 1.0, 1.5, 1.0) and (1.5, 2.0, 0.5, 1.0) for
sample sizes n =30, 100, 200 and 500. In each simulation,
for a given combination of parameters (n, a, f, 6, 1), we
first resample the observations 10,000 times from the
TTHPLD distribution to obtain the observations (x,, x,,
x,). Then, we separately calculate the average estimates
(AEs), average biases (ABs) and average mean square
errors (AMSEs) as follows:

(i) The average estimates (AEs) of the MLEs @ = (@&, /?,
8, A) are given by

N
1 .
AE(Q):ﬁZ 0,i=1,23,4.
i=1

(ii) The average biases (ABs) of the MLEs @ = (&, 8,0,
1), are given by

N

1 R
AB(0) = Nz 6; - 0y),i=1,2,3,4.

i=1

(iii) The average mean square errors (AMSEs) of the
MLEs 6 =(&, B, 8, 1), are given by

N
1 R
AMSE (6) = Nz (6, — 0)2,i=1,2,3,4.

i=1

The simulation results are summarized in Table 2.

TABLE 2. Maximum likelihood estimates of the TTHPLD distribution

Sample size Parameters 0=2.0 p=15 0=1.0 A=0.5
a B 6 i

n=30 AE 1.1778 1.1383 0.6997 0.9971
AB 0.8222 0.3617 0.2653 -0.5470

AMSE 0.7629 1.0474 0.0745 0.2625

n=100 AE 1.3220 1.2044 1.0935 0.6743
AB 0.6781 0.2956 -0.0935 -0.1743

AMSE 0.5766 0.4283 0.0027 0.0212

n=250 AE 2.1080 1.4184 1.0520 0.5369
AB -0.1080 0.0816 -0.0520 -0.0369

AMSE 0.0084 0.0066 0.0012 0.0041

n=500 AE 2.0058 1.5047 1.0500 0.5309
AB -0.0058 -0.0047 -0.0500 -0.0309

AMSE 0.0002 0.0002 0.0011 0.0009

continue to next page
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continue from previous page

Sample size Parameters a=1.5 p=15 6=0.5 A=0.5
a B g i
n=30 AE 1.2683 1.2038 0.5416 0.4325
AB 0.2317 0.2962 -0.0416 0.0675
AMSE 0.6830 0.7316 0.0210 0.1205
n=100 AE 1.2800 1.5753 0.5341 0.4687
AB 0.2200 -0.0753 -0.0341 0.0313
AMSE 0.5214 0.0642 0.0103 0.0589
n=250 AE 1.3551 1.5356 0.5198 0.5170
AB 0.1449 -0.0356 -0.0198 -0.0170
AMSE 0.3694 0.0297 0.0057 0.0241
n=500 AE 1.4998 1.5013 0.4982 0.5009
AB 0.0002 -0.0013 0.0018 -0.0009
AMSE 0.0000 0.0001 0.0001 0.0001
Sample size Parameters a=15 £=1.0 0=1.5 A=1.0
@ B 6 A
n=30 AE 1.8448 0.5935 1.8646 0.8416
AB -0.3448 0.4065 -0.3646 0.1584
AMSE 0.5796 0.8416 0.6013 0.2863
n=100 AE 1.2819 0.6682 1.7402 0.8840
AB 0.2181 0.3318 -0.2402 0.1160
AMSE 0.1436 0.4527 0.1519 0.0872
n=250 AE 1.5828 1.1328 1.6540 0.9478
AB -0.0828 -0.1328 -0.1540 0.0522
AMSE 0.0375 0.0511 0.0557 0.0228
n=500 AE 1.5012 1.0454 1.4917 1.0128
AB -0.0012 -0.0454 0.0083 -0.0128
AMSE 0.0005 0.0293 0.0010 0.0084
Sample size Parameters a=15 p=2.0 6=0.5 A=1.0
a B 7 i
n=30 AE 1.0813 1.1236 0.7396 0.5977
AB 0.4187 0.8764 -0.2396 0.4023
AMSE 0.3154 0.7461 0.1320 0.3698
n=100 AE 1.7601 1.7650 0.5356 0.8782
AB -0.2601 0.2350 -0.0356 0.1218
AMSE 0.1185 0.1001 0.0067 0.0759
n=250 AE 1.5706 1.8974 0.5050 0.9752
AB -0.0706 0.1026 -0.0050 0.0248
AMSE 0.0431 0.0625 0.0003 0.0144
n=500 AE 1.5047 2.0051 0.4992 1.0103
AB -0.0047 -0.0051 0.0008 -0.0103

AMSE 0.0002 0.0003 0.0001 0.0014
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As shown in Table 2, when the sample size n
increases, the estimated values of a, f, § and 4 obtained
through the maximum likelihood method converge to
the true parameter values. Moreover, the bias and mean
square error for each parameter gradually approach 0.
Hence, these results illustrate the consistency of the
MLEs.

REAL DATA ANALYSIS

In this section, a real dataset is analyzed to demonstrate
the adaptability of the TTHPLD. The dataset reported
in Al-Khazaleh, Al-Omari and Al-Khazaleh (2016)
includes 72 exceedances for the years 1958-1984,
rounded to one decimal place of flood peaks (in m?/s) of
the Wheaton River (WR) near Carcross in Yukon Territory,
Canada. Here exceedances refer to the specific values
by which the flood flow exceeds a predetermined
threshold. Thus, these data illustrate the extent to which
flood peaks exceeded the set threshold at different times.
The data and descriptive statistics are given in Table 3.
From Table 3, the skewness value of the WR
data indicates that this dataset is skewed to the left.
Smaller values of the Akaike information criterion
(AIC), Bayesian information criterion (BIC), consistent
Akaike information criterion (CAIC) and Hannan-Quinn

information criterion (HQIC) correspond to better
distributions, where

AIC = =2MLL + 2w, CAIC = —2MLL +

2wn BIC = —2MLL + wLog(n)
n-w-1’ B wLogin),

HQIC = 2Log{Log(n)[w — 2MLL]},

where w is the number of parameters; » is the sample size
and MLL is the maximized log-likelihood. The MLEs,
standard deviations (Sds) and 95% confidence intervals
(ClIs) of the LD, TPLD, TTPLD, THPLD and TTHPLD are
presented in Table 4. Note that the parameters of the
six models are estimated via the differential evolution
method.

Table 5 presents the statistics AIC, CAIC, BIC,
HQIC, and -2MLL for the WR data. When comparing the
THPLD model to the LD, TPLD, and TTPLD models, it can
be observed that the TTHPLD model yields lower AIC,
CAIC, BIC, HQIC, and -2MLL values. This indicates that
the TTHPLD model performs better than the other four
models and provides a better fit for the data.

TABLE 3. 72 exceedances of Wheaton River flood data and associated descriptive statistics

0.4 2.2 14.4 20.6 0.7 12 1.9 1.7 13 1.1
93 5.3 11.6 18.7 8.5 14.1 1.1 1.7 2.5 1.4
14.4 25.5 37.6 22.1 15 22 39 11 229 1.1
1.7 0.6 0.1 0.3 0.6 7.3 1.7 7 2.8 9.9
Dataset
30 10.4 9 10.7 20.1 3.6 14.1 25.5 30.8 13.3
34 21.5 2.7 27.6 5.6 36.4 4.2 64 11.9 27.1
2.5 274 20.2 53 2.5 9.7 1.5 27.5 1 27
16.8 0.4
Statistics Mean Variance Median Skewness Kurtosis
Values 12.204 151.222 9.5 1.473 5.89
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TABLE 4. The MLEs, Sds and 95% confidence intervals of the six models

Model Parameter MLE Sd Lower limit Upper limit
LD 0 0.1530 0.0001 0.1320 0.1739
TPLD 0 0.0148 0.0023 -0.0638 0.0935
a 0.0921 0.0009 0.0436 0.1406
TTPLD 0 0.0242 0.0010 -0.0272 0.0756
a 0.0911 0.0004 0.0569 0.1254
1 0.2193 0.0451 0.1435 0.2942
THPLD ] 0.0845 0.0003 0.0580 0.1111
a 3.9471 0.0115 3.7711 4.1232
B 0.0073 0.0036 -0.0920 0.1067
TTHPLD 0 0.0385 0.0061 -0.0897 0.1668
a 4.0428 0.0067 3.9084 4.1773
B 0.1492 0.0096 0.1331 0.1654
1 0.0842 0.0031 0.0551 0.1133
TABLE 5. The statistics AIC, CAIC, BIC, HQIC and -2MLL for the WR data
Model AIC CAIC BIC HQIC -2MLL
LD 526.4235 523.1469 524.1469 525.5172 264.2117
TPLD 500.3447 493.7914 495.7914 498.5320 252.1723
TTPLD 498.0450 488.2150 491.2150 495.3260 252.0225
THPLD 498.2634 488.4334 491.4334 495.5443 252.1317
TTHPLD 495.9246 482.8180 486.8180 492.2992 251.9623
CONCLUSIONS of the MLEs. Furthermore, a real dataset was used to

A transmuted three-parameter Lindley distribution using
the transmutation map method has been introduced.
The r-th moment, coefficient of variation, skewness
and kurtosis, order statistics, reliability and hazard rate
functions and Renyi entropy are derived and studied.
Moreover, the maximum likelihood method was used to
estimate the parameters of the proposed distribution, and a
simulation study was carried out to check the consistency

demonstrate the superiority of the new model in data
modeling. Finally, the proposed model has at least three
advantages. First, the new distribution provides better data
fitting ability than that of existing models. Second, the
new model corrects the regularization conditions of the
three-parameter Lindley distribution, and its more flexible
parameter setting extends existing models, such as the
Lindley distribution, transmuted Lindley distribution,



1440

two-parameter Lindley distribution, transmuted two-
parameter Lindley distribution, and three-parameter
Lindley distribution. Finally, the proposed model is well
suited for datasets where there is a significant right tail
or when the tail decays quickly toward zero.
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