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ABSTRACT

To enhance precision in estimating unknown population parameters, an auxiliary variable is often used. However, in
scenarios where required information on an auxiliary variable is partially or fully unavailable, two-phase sampling is
commonly employed. The challenge of estimating the variance vector using multi-auxiliary variables is a less explored
area in current literature. This paper addresses the estimation of vector of unknown population variances for multiple
study variables by using an estimated vector of variances derived from multi-auxiliary information. This approach is
particularly relevant when population variances for the multi-auxiliary variables are not known prior to the survey. The
paper introduces a generalized variance and a vector of biases for the proposed multivariate estimator. Special cases
of the proposed multivariate variance estimator are provided, accompanied by expressions for mean square errors.
Theoretical mathematical conditions are discussed to guide the preference for the proposed estimator. Through the
analysis of real-world application-based data, the applicability and efficiency of the proposed multivariate variance
estimator are demonstrated, outperforming modified versions of multivariate variance estimators. Additionally, a
simulation study validates the superior performance of the proposed estimator compared to its modified estimators.

Keywords: Generalized variance; multivariate estimator; regression-cum-exponential estimator; two-phase sampling;
variance vector estimator

ABSTRAK

Untuk meningkatkan ketepatan dalam menganggar parameter populasi yang tidak diketahui, pemboleh ubah bantuan
sering digunakan. Walau bagaimanapun, dalam senario yang mana maklumat yang diperlukan tentang pemboleh
ubah bantuan sebahagian atau sepenuhnya tidak tersedia, pensampelan dua fasa biasanya digunakan. Cabaran untuk
menganggar vektor varians menggunakan pemboleh ubah berbilang bantu adalah bidang yang kurang diterokai dalam
kepustakaan semasa. Kertas ini menangani anggaran vektor varians populasi yang tidak diketahui untuk pelbagai
pemboleh ubah kajian dengan menggunakan anggaran vektor varians yang diperoleh daripada maklumat berbilang
bantu. Pendekatan ini amat relevan apabila varians populasi untuk pemboleh ubah berbilang bantu tidak diketahui
sebelum tinjauan. Makalah ini memperkenalkan varians umum dan vektor bias untuk penganggar multivariat yang
dicadangkan. Kes khas penganggar varians multivariat yang dicadangkan disediakan, disertakan dengan pengekspresan
untuk ralat kuasa dua min. Keadaan matematik teori dibincangkan untuk membimbing keutamaan bagi penganggar
yang dicadangkan. Melalui analisis data berasaskan aplikasi dunia sebenar, kebolehgunaan dan kecekapan penganggar
varians multivariat yang dicadangkan ditunjukkan, mengatasi versi pengubahsuaian penganggar varians multivariat.
Selain itu, kajian simulasi mengesahkan prestasi unggul penganggar yang dicadangkan berbanding penganggarnya
yang diubah suai.

Kata kunci: Penganggar multivariat; penganggar regresi merangkap eksponen; penganggar vektor varians; pensampelan
dua fasa; varians umum
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INTRODUCTION

In recent years, survey sampling has become helpful in
various sectors, including academia, healthcare, and both
public and private industries. Surveys, employing both
probability and non-probability sampling, are important
in fields such as agriculture, industry, and healthcare. The
crucial role of survey sampling in collecting data across
diverse fields is indisputable.

As the general use of survey sampling grows, the
demand for more advanced methods to interpret results
becomes dominant. Multivariate estimation is also one
of them. For example, in environmental monitoring,
there are instances where auxiliary information (such
as meteorological conditions) is not available for
all monitoring stations or time periods. The use of a
multivariate estimator (MV) without auxiliary information
allows researchers to still derive estimates of air quality
indicators, providing valuable insights into city-wide
pollution levels. Among these methods, variance
estimation emerges as the best choice for addressing the
elaboration of complex survey designs. Neyman (1938)
introduced a cost-effective two-phase sampling technique
which is particularly valuable when collecting data on the
variable of interest proves financially burdensome. For
a deeper understanding of the application of two-phase
sampling, refer to Breidt and Fuller (1993), Cochran
(1977), Hussain et al. (2018), and Rao (1973).

Cebrian and Garcia (1997) proposed an almost
unbiased multivariate ratio-type estimator for population
variance. Das and Tripathi (1978) addressed variance
estimation by incorporating both population variance and
the coefficient of variation (CV) of an auxiliary variable.
Isaki (1983) developed ratio and regression estimators
using the variance of the auxiliary variable for variance
estimation.

Singh, Chandra and Singh (2003) proposed a
variance estimator using multi-auxiliary variables
(MAVs) and explored Srivastava and Jhajj (1980)
estimators. Ahmad, Hussain and Hanif (2016) suggested a
multivariate approach under successive sampling. Asghar,
Sanaullah and Hanif (2018) introduced a multivariate
variance (MV) estimator for variance-vector estimation
using MAVs in two-phase sampling. Further, Asghar
et al. (2023) proposed the multivariate ratio estimator
for estimating the variance vector. Zamanzade and Al-
Omari (2016) provided estimates of mean and variance
by incorporating modifications to traditional ranked
set sampling. Muneer et al. (2018) introduced a new

ratio-cum-product exponential-type estimator for the
unknown variance of a finite population. Lone, Subzar
and Sharma (2021) enhanced the performance of a
population variance estimator by using the supporting
information.

Shahzad et al. (2021a) estimated variance using
attributes of auxiliary variables, while Zaman and Bulut
(2019) proposed a generalized variance approach instead
of traditional ratio estimators. Additionally, Shahzad et
al. (2021b) proposed estimators for population variance
based on L-moments, such as L-mean, L-standard
deviation, and L-coefficient of variation.

Various researchers have proposed different
estimators for the estimation of population variance under
the assumption that the population variance of auxiliary
variables is known prior to a survey. Notable works
include those by Ahmad, Hussain and Hanif (2016),
Arcos and Rueda (1997), Asghar et al. (2023), Niaz et
al. (2022), Sanaullah et al. (2020), and Zaman and Bulut
(2019). However, real-life situations often arise where
population variances are not available before a survey.
In such cases, two-phase sampling becomes essential to
estimate the unknown population variance of auxiliary
variables.

Researchers, such as Abu-Dayyeh and Ahmed
(2005), have addressed this issue in the context of
estimating the variance of a single study variable.
Additionally, Sanaullah, Hanif and Asghar (2016)
introduced generalized exponential-type ratio and
product estimators for estimating variance when the
mean auxiliary variable is unknown prior to the survey
under two-phase sampling. More recently, Abid et al.
(2020) proposed a ratio estimator for robust measures
of population variance and compared it with competing
estimators using quantiles of auxiliary variables,
concluding its robust performance even in the presence
of outliers.

Motivated by the studies discussed in the earlier
text, this paper introduces a novel multivariate regression-
cum-exponential (MRCE) type estimator for scenarios
where information about the parameter(s) of auxiliary
variables is not available. While usual regression and
multiple regression estimators perform well in symmetric
and linear situations, practical scenarios often exhibit
non-symmetric and skewed distributions. In such cases,
regression-cum-exponential type estimators are expected
to yield superior results compared to simple regression
estimators.



MATERIALS, NOTATIONS AND SAMPLING
METHODOLOGY

Consider a finite population comprising N units. Let Y,
represent the j-th study variable, and X, denote the - th
auxiliary variable, where j ranges from 1 to m and &
ranges from 1 to n. Utilizing a two-phase sampling design,
a first-phase sample size #, is initially selected, followed
by a second-phase sample size n, chosen as a function
of n, (i.e., n, = f(n)). To comprehend the properties
of an estimator, certain essential expectations are
demonstrated by examining the following expressions:
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For estimation of vector of population variances, let us
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Let § f be the population variance, and its usual unbiased
sample variance estimator vector, is given by

2 .
t, = [IO./](lxm) , where, );=$, j=12,...m (1)

i’

The variance of the modified unbiased sample variance
vector is defined as,

Zto - yz Zy(mxm) :

The Isaki (1983) estimator is modified into a multivariate
regression (MR) estimator, and form of the modified
estimator, is given by,

[
2 2 2
=5 + E Ori| s -5 .
Yi) s} k]( Xk x(2)k) (2)

The expression of Generalized variance of 7., is given
by,
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Following Shabbir and Gupta (2015), a MR type estimator
using sample means of auxiliary information is modified,
and it is given by,
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The expression of Generalized variance of /, is shown by,
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Following Sanaullah, Hanif and Asghar (2016), a MRCE
type estimator is modified for estimating a vector of
population variances, and it is given with a form given by,
where,
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The Generalized variance of 7, is given by,
_ _ _ -1
Zta - SS|:72 Zy(mxm) (72 7 )Zyxd(mx/) Z"d“x,) Zxdy([xm) :|

PROPOSED METHODOLOGY FOR ESTIMATING THE
VECTOR OF VARIANCES

In this section, a generalized MRCE estimator under two-
phase sampling is proposed for estimating a vector of
population variances. Form of the proposed MV estimator
is given by,

t[? :[tpj:'(lxm) ’ j:1’2’3:~--am
where, [ , ! 5 (s : oxp
tpj - Sy‘f(z) +Z lg'(sx(l)k —SX(Z)k)
k=1

§?
Z x(l)k Se @)k (5)

x(l)k +Sx(2)k

It is clear that positive values of bkj produce different
families of multivariate exponential (ME) ratio
estimators, and negative values of b, will give different
families of ME product estimators. 5kj is assumed to be
unknown and needs to be estimated and emphasized its
optimal value.

DERIVATION OF THE VECTOR OF THE BIAS, AND THE
GENERALIZED VARIANCE

To determine the generalized variance and bias vector,
the proposed estimator, as defined in Equation (5),
incorporates sampling errors. At the start, focus on the j-th
estimator of this proposed estimator, expressed as follows,
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Retaining the terms up to the order O(n!), the proposed
estimator is given as,
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After some simplification, the equation is obtained as,
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Applying expectations, a vector of the bias expression
for j-th estimator is given by,
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Consider Equation (8) to proceed as,
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Alternatively, Equation (10) can take another form,
given by:
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The optimum value of W are obtained by differentiating
Equation (11) w.r.t ¥, and equating the first derivative
to zero. The optimum value is given by,

Y =2y

opt(Ixm) Xy = Ipamy

Put the optimum value of ¥ in Equation (11), the
minimum Generalized variance of t, is obtained, and it
is given by

o0 2 =SS (12 2, 1 T B ) 12)

Yimxm) YX(mxt)
Remark 1

It is observed that considering b = 0 in Equation (5) the
MR estimator may be obtained for the no information case
using MAVs. The vector of the bias and the generalized
variance may be obtained directly from Equations (9)
and (11).

= [t’f :|(l.xm) ’

j=12,3,....m

I
|2 2 2
where, f,; = [Sym) +Z5kj (S3 _Sx(2)k)j .
=

Remark 2

Similarly, it is also noted that the ME estimator may
be obtained by putting 5,(_/.= 0 directly in Equation (5)
and its bias and generalized variance may be obtained
from Equations (9) and (11) for the situation when the
required information about the parameters or the function
of parameters, such as the population means, variances,
correlation, coefficient of variation etcetera of the MAVs
is not available.

l.= [te.‘/'](um) ’

j=123,...m

! 2 2
k=1 Seak TSk

Remark 3

Observing that forj=1,and k=1, 2,3, ..., /, is considered
in Equation (5), a generalized univariate regression-
cum-exponential estimator can be derived. This setting
refers to situations where no information is available, and
the resulting estimator can be expressed as,
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Lpu :[tpuj](lxl)’ j=123,....m

!

z (Sx(l)k
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Under the same conditions, one may obtain the bias
and generalized variance for the generalized univariate
estimator from Equations (9) and (11).

RELATIVE PERFORMANCE OF THE PROPOSED
ESTIMATOR

To assess the effectiveness of the suggested MREV
estimator, a theoretical comparison is conducted,
evaluating its performance in a univariate context against
various alternative modified estimators.

The proposed estimator ¢ will perform more efficiently
than usual sample variance estimator £ iff,

A, 5¢
a2y (13)

X

The proposed estimator 1, performs better than Isaki’s
(1983) regression estimator Le when

hie LSNP YO (14)
A 4

X

The proposed estimator t, performs better than Shabbir
and Gupta (2015) regression estimator trgwhen following
condition is met,

2
A
[\/Z‘P 2@] <c,

2 (15)
24
where, ¢ = thcl)lexd -84, iy +[—yx] .

NN

The proposed estimator 1, performs better than Sanaullah,
Hanif and Asghar (2016) regression-cum-exponential
estimator ¢ , when,



1698

Ay 1| Jd Ayx 1| Jd
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RESULTS AND DISCUSSION

In this study, the MRCE is utilized, demonstrating its
application with real-life data extracted from Canadian
climate records, as published by the National Oceanic
and Atmospheric Administration (NOAA). The dataset
focuses on daily weather records for the month of May
2017, collected from 37,247 different weather stations
across Canada.

To contour the analysis, transform the data into
weekly summaries, specifically for the weeks of May
08-14,2017; May 15-21,2017; and May 22-28,2017. To
ensure data wholeness, stations with incomplete records
for a full week are excluded from the analysis. Only weeks
with recorded data for the entire week are retained for
further investigation.

For the auxiliary variables, monthly temperature
data for the last three years (2016, 2015, and 2013) is
considered. Stations lacking temperature records for
the entire week in these years are excluded. As a result,
704 stations are retained with complete temperature
data for the full week for our analysis. To address the
missing values and facilitate variable transformations,
the tidyverse Package (2016) is used. The study variable
is defined as the Temperature Averages (TAVGs) for the
three weeks of May 2017, denoted as i =1, 2, 3. The
auxiliary variables for the previous three years (2016,
2015, and 2013) consist of monthly TAVGs, also denoted
asi=l1,2,3.

A finite population approach is used to model the
variance and covariance of weekly temperatures across
Canada. A comprehensive description of population
characteristics is presented in Table A1 in the appendix.
In this study, a two-phase sampling strategy is employed
for estimating the population variance. Initially, a sample
of size n, = 211 is selected from the population, and
relevant calculations are performed based on this first-
phase sample. Subsequently, using a simple random
sampling without replacement, a second-phase sample of
size n, = 105 is drawn from the previously selected first-
phase sample. For both the first-phase and second-phase
samples, key statistics are computed. These statistics
are then integrated into the proposed multivariate (MV)

estimator, as well as the existing MV estimators, to
derive estimates for the population variance. This entire
process is simulated 1000 times to ensure robustness in
the estimation.

Finally, the determinants for the generalized
variance of each MV estimator are calculated. The results
are presented in Table 1, setting the corresponding values
for both the proposed and modified existing estimators.
To address the missing-ness in the data where it is present,
mice R statistical package (2011) is used. The Broom
(2016) package for replicating two-phase sampling
procedure is adopted, so as to take first-phase and second
phase samples in a faster and more efficient way.

Table 2 shows the determinants of the proposed,
and existing estimators. From Table 2, the proposed MV
estimator is attaining the smaller value of determinant
of its generalized variance, where the determinants for
each of the mentioned existing estimators are larger.
The percent relative efficiency (PRE) value for each of the
mentioned estimators including the proposed estimator
is also computed. Here, PRE values also indicate that
the proposed MV estimator is better in performance as
compared to the performance of mentioned existing
estimators. Tables 1 and 2 clearly indicate that the
empirical results are in favor of the proposed MV
estimator.

SIMULATION RESULTS AND DISCUSSION

A simulation is performed to assess the performance of
the proposed MV, along with other mentioned estimators,
for estimating population variance under a two-phase
sampling design. Consider the three study variables
(Y, Y,, Y¥,) and the three auxiliary variables X, X, X))
for multivariate estimation. The auxiliary variables are
generated following the mechanism defined as follow:

X,~N(12,33);X,~ X" p+/l1-p* *N(12,2.5);
* 2
X~ X, p++Jl-p* *N(15,2.6)

where, p=0.9.

The study variables are simulated using the mechanism
given as:

ain-2+g, where, £~ N(0,1).

M=

Y, =
1

1

The three study variables with three auxiliary variables
under the discussed model are distinct by the equations:



Y =17XE +13X3 +1.6X35 +¢,
Yo =12X7 +1.5X5 +1.8XF +¢,
Yy =14X2+1.5X3 +1.2X3 +¢.

The statistics computed from both the first-phase
and second-phase samples are then incorporated into
the proposed estimator and the specified existing
estimators to estimate the population variance. This
simulation process is repeated 10000 times to compute
the generalized variance for the proposed estimator and
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the mentioned existing estimators. The simulation results,
including the generalized variance and the PRE values,
are presented in Tables 3 and 4, respectively.

In Table 3, a value on the main diagonal of
a generalized variance is a MSE of the estimator
corresponding to the row and the column. Tables 3 and
4 show that the proposed estimator is more efficient than
the considered estimators because a lower MSE indicates
that the estimator tends to be closer to the true value of
the parameter being estimated. The conclusion based
on the simulation indicates that the proposed estimator
remains consistent with the conclusion drawn through
the real-life data.

TABLE 1. Generalized variance of the proposed and existing estimators

Generalized variance of tp

Generalized variance of t;

Generalized variance of treg

Generalized variance of tng

Generalized variance of t

354.46678 52.91568 50.98563
52.91568 51.92468 37.58348
50.98563 37.58348 71.66995

573.5104 157.29547 141.02297
1572955 9234649  74.25925

141.0230  74.25925  96.01242

364.71483 29.39202 24.90685
29.39202 62.93120 49.83716
2490685 49.83716 75.40119
618.0714 172.21395 156.89180
1722140  98.04573  80.48775
156.8918  80.48775 102.89652
597.2441 168.76185 154.09151
168.7618  97.50908  80.23343

154.0915  80.23343 102.76829

TABLE 2. Determinants of the generalized variance of the proposed and existing estimators

Estimator t t t t
14 0 reg rg a
Determinant 1004805 685570.9 793535.9 1115737 1070918
PRE 146.5647 100 126.6238 90.0575 93.82655




1700

TABLE 3. Simulation based on generalized variance of the proposed and existing estimators

78278828 79774707 61232339
Generalized variance of tp 79774707 81814920 62339927
61232339 62339927 48054423
160429771 163784762 125783555
Generalized variance of t, 163784762 167725477 128352965
125783555 128352965 98774953
160420103 163775008 125774928
Generalized variance of treg 163775008 167715614 128344245
125774928 128344245 98767358
150722369 154107242 118140599
Generalized variance of t,g 154107242 158089118 120732127
118140599 120732127 92757288
160435404 163790189 125788487
Generalized variance of t, 163790189 167730726 128357699
125788487 128357699 98779173
TABLE 4. Determinants of the proposed and existing estimators
Estimator t t t t
V4 0 reg rg a
Determinant 6.009 x 1018 1.226 x 1019 1.2258 x 1019 1.161 x 1019 1.2256 x 1019
PRE 204.0389 100 100.0186 105.5396 100.0306
CONCLUSIONS 2) and simulated data (Tables 3 & 4). From these tables,

In conclusion, this paper contributes to the field of
multivariate variance estimation by introducing a novel
approach that addresses the challenges of utilizing
auxiliary information when the required parameters
of the auxiliary variables are not readily available.
In this study, the MSEs of each estimator, including
the proposed estimator and competitor estimators, are
computed using real-life application data (Tables 1 &

it is evident that the proposed estimators have smaller
MSEs than those of the competitor estimators. Therefore,
it can be concluded that the proposed estimator is
more efficient based on achieving smaller MSEs. The
proposed MV estimator shows superior performance,
as demonstrated by both real-life data analysis and
simulation studies. This work lays the foundation for
further advancements in precision-enhancing techniques
for population parameter estimation.



ACKNOWLEDGMENTS

Princess Nourah bint Abdulrahman University Researchers
Supporting Project number (PNURSP2024R443), Princess
Nourah bint Abdulrahman University, Riyadh, Saudi
Arabia.

REFERENCES

Abid, M., Sherwani, K.A.R., Tahir, M., Nazir, Z.H. & Riaz, M.
2020. An improved and robust class of variance estimator.
Scientia Arania 28(6): 3589-3601.

Abu-Dayyeh, W. & Ahmed, M. 2005. Ratio and regression
estimators for the variance under two-phase sampling.
International Journal of Statistical Sciences 4: 49-56.

Ahmad, Z., Hussain 1. & Hanif, M. 2016. Estimation of finite
population variance in successive sampling using
multi-auxiliary variables. Communication in Statistics-
Theory and Methods 45(3): 553-565.

Asghar, A., Sanaullah, A. & Hanif, M. 2018. A multivariate
regression-cum exponential estimator for population
variance vector in two phase sampling. Journal of King
Saud University-Science 30: 223-228.

Asghar, A., Sanaullah, A., Abbasi, A.M. & Hanif, M.
2023. Advancing sampling techniques: Multivariate
ratio estimation for variance vector in two-phase
sampling. Bulletin of Business and Economics 12(3):
473-484.

Breidt, F.J. & Fuller, W.A. 1993. Regression weighting for
multipurpose samplings. Sankhya 55: 297-309.

Cebrian, A.A. & Garcia, M.R. 1997. Variance estimation using
auxiliary information an almost unbiased multivariate ratio
estimator. Metrika 45: 171-178.

Cochran, W.G. 1977. Sampling Techniques. New York: John
Wiley & Sons.

Das, A.K. & Tripathi, T.P. 1978. Use of auxiliary information
in estimating the finite population variance. Sankhya 40:
139-148.

Hussain, S., Song, L., Ahmad, S. & Riaz, M. 2018. On auxiliary
information based improved EWMA median control charts.
Scientia Iranica 25(2): 954-982.

Isaki, C. 1983. Variance estimation using auxiliary information.
Journal of the American Statistical Association 78: 117-
123.

Lone, S.A., Subzar, M. & Sharma, A. 2021. Enhanced estimators
of population variance with the use of supplementary
information in survey sampling. Mathematical Problems
in Engineering 2021: 9931217.

1701

Muneer, S., Khalila, A., Shabbirb, J. & Narjisb, G. 2018. A
new improved ratio-product type exponential estimator
of finite population variance using auxiliary information.
Journal of Statistical Computation and Simulation 88(16):
3179-3192.

Neyman, J. 1938. Contribution to the theory of sampling
human. Journal of the American Statistical Association
33(201): 101-116.

Niaz, 1., Sanaullah, A., Saleem, I. & Shabbir, J. 2022. An
improved efficient class of estimators for the population
variance. Concurrency and Computation: Practice and
Experience 34(4): €6620.

Rao, J. 1973. On double sampling for stratification and
analytical surveys. Biometrika 60: 125-133.

Sanaullah, A., Hanif, M. & Asghar, A. 2016. Generalized
exponential estimators for population variance under
two-phase sampling. International Journal Applied and
Computational Mathematics 2: 75-84.

Sanaullah, A., Niaz, 1., Shabbir, J. & Ehsan, 1. 2020. A class of
hybrid type estimators for variance of a finite population
in simple random sampling. Communications in Statistics
- Simulation and Computation 51(10): 5609-5619.

Shabbir, J. & Gupta, S. 2015. A note on generalized
exponential type estimator for population variance in
survey sampling. Revista Colombiana de Estadistica 38(2):
385-397.

Shahzad, U., Ahmad, 1., Almanjahie, I.M., Al-Noor, N.MH.
& Hanif, M. 2021a. A novel family of variance estimators
based on L-moments and calibration approach under
stratified random sampling. Communications in Statistics
- Simulation and Computation 52(8): 3782-3795.

Shahzad, U., Ahmad, 1., Almanjahie, .M., Koyuncu, N. &
Hanif, M. 2021b. Variance estimation based on L-moments
and auxiliary information. Mathematical Population Studies
29(1): 31-46.

Singh, H.P., Chandra, P. & Singh, S. 2003. Variance estimation
using multi-auxiliary information for random non-response
in survey sampling. Statistica 63(1): 23-40.

Srivastava, S.K. & Jhajj, H.S. 1980. Class of estimator using
auxiliary information for estimating finite population
variance. Sankhya 42: 87-96.

Zaman, T. & Bulut, H. 2019. Modified regression estimators
using robust regression methods and covariance matrices in
stratified random sampling. Communications in Statistics -
Theory and Methods 49(14): 3407-3420.

Zamanzade, E. & Al-Omari, A.I. 2016. New ranked set sampling
for estimating the population mean and variance. Hacettepe
Journal of Mathematics and Statistic 45(6): 1891-1905.

*Corresponding author; email: chaamirsanaullah@yahoo.com



1702

DESCRIPTION OF THE REAL-LIFE DATA

TABLE Al. Details of variables for population

Y, v, Y, X X, x,
Population Week-1 (average Week-2 (average Week-3 (average (Year-2016 Year-2015 Year-2013
temp. May 08-14,  temp. May 15-  temp. May 22-28, (average temp. (average temp. (average temp.
2017) 21,2017) 2017) for May) for May) for May)
TABLE A2. Variance-covariance matrix
Population Y, Y, Y, X, X, X,
Y, 16.4344 11.7119 11.2634 5.0995 2.0234 0.5231
Y, 11.7119 10.0879 9.8238 1.3889 2.50897 0.7491
Y, 11.2634 9.8238 9.7610 1.3933 3.0050 0.9370
X 5.0996 1.3889 1.3933 7.4839 0.0406 -0.0538
X, 2.0234 2.50897 3.0050 0.0406 4.6808 0.0080
X, 0.5231 0.7491 0.9370 -0.0538 0.0080 2.0420
TABLE A3. Correlation matrix
Population Y, Y, Y, X, X, X,
Y, 1.0000 0.8869 0.7654 0.9026 0.8528 0.9122
Y, 0.8869 1.0000 0.7535 0.8397 0.7789 0.8513
Y, 0.7654 0.7535 1.0000 0.8335 0.8118 0.8193
X, 0.9026 0.8397 0.8335 1.0000 0.9421 -0.9453
X, 0.8528 0.7789 0.8118 0.9421 1.0000 0.9208
X, 0.9122 0.8513 0.8193 -0.9453 0.9208 1.0000




