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ABSTRACT 

 

Automated underwater fish detection offers an appealing solution to improve efficiency and 

cost-effectiveness compared to labor-intensive manual detection methods. This study 

conducted a thorough assessment of three state-of-the-art single-stage detectors belonging to 

the You Only Look Once (YOLO) series – namely, YOLOv7, YOLOv8, and YOLOv9 – 

focusing on the detection and classification of four dominant coral reef fish species. These 

YOLO models were trained using a customized dataset comprised of underwater images 

showcasing the fish species, sourced from Pulau Bidong and neighboring islands in 

Terengganu, Malaysia. Data collection was facilitated using the Stereo-Diver Operated 

Underwater Video System (Stereo-DOVs). The main objective of this study is to determine the 

top-performing model for precisely detecting and classifying the fish in the images. Notably, 

each of the YOLO models achieved high mean Average Precision (mAP)@0.5 scores, with 

percentages of 96.6%, 97.9%, and 94.3% respectively. Further visual examination showcased 

the models’ adeptness in accurately detecting the majority of fish instances within the test 

dataset and dataset images from the internet, confirming their robust performance. Taking into 

account both the evaluation metrics and visual results, YOLOv7 and YOLOv8 stand out as 

appealing choices to be used as the base models for our future study. 

Keywords: Artificial intelligence; Computer vision; Deep learning; Fish detection; YOLO 
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ABSTRAK 

 

Pengesanan ikan bawah air secara automatik menawarkan penyelesaian yang menarik untuk 

meningkatkan kecekapan dan keberkesanan dari segi kos berbanding kaedah pengesanan 

secara manual. Kajian ini menjalankan penilaian menyeluruh terhadap tiga pengesan peringkat 

tunggal tercanggih milik siri You Only Look Once (YOLO) - iaitu, YOLOv7, YOLOv8 dan 

YOLOv9 - memfokuskan pada pengesanan dan pengelasan empat dominan spesies ikan 

karang. Model YOLO ini dilatih menggunakan set data tersuai yang terdiri daripada imej 

bawah air yang mempamerkan spesies ikan, yang diperolehi dari Pulau Bidong dan pulau 

berhampiran di Terengganu, Malaysia. Pengumpulan data telah dikumpul menggunakan 

Sistem Video Bawah Air (Stereo-DOVs). Objektif utama kajian ini adalah untuk menentukan 

model yang berprestasi tinggi untuk mengesan dan mengklasifikasikan ikan dalam imej dengan 

tepat. Secara keseluruhannya, setiap model YOLO mencapai skor min Purata Ketepatan 

(mAP)@0.5 yang tinggi, dengan peratusan masing-masing 96.6%, 97.9% dan 94.3%. 

Pemeriksaan visual selanjutnya mempamerkan kebolehan model dalam mengesan dengan tepat 

kebanyakan contoh ikan dalam set data ujian dan imej set data daripada internet, mengesahkan 

prestasi mantap mereka. Dengan mengambil kira kedua-dua metrik penilaian dan hasil visual, 

YOLOv7 dan YOLOv8 menonjol sebagai pilihan yang menarik untuk digunakan sebagai 

model asas untuk kajian masa depan kami. 

Kata kunci: Kecerdasan buatan; Penglihatan computer; Pembelajaran mendalam; Pengesanan 

ikan; YOLO 

 

INTRODUCTION 

 

Coral reefs are often called the "tropical rainforests of the sea" for their remarkable diversity, 

provide a wide array of ecosystem services and advantages to humanity. Numerous studies 

have demonstrated the significance of coral reefs in various aspects including fisheries 

(Moberg & Folke 1999; Teh et al. 2013), coastal protection (Costanza et al. 1997), supporting 

tourism (Cesar et al. 2003), recreation (Adey 2000), and contributing to the exploration of 

potential medicinal resources (Bruckner 2023). However, as noted by Eddy et al. (2021), the 

ongoing degradation of coral reef ecosystems is primarily attributed to the persistent effects of 

global environmental changes and human activities. Therefore, it is imperative to take action 

to continuously monitor the condition of coral reef environments. One such action is fish 

population monitoring, as this method can help evaluate the relative importance of 

environmental threats impacting local reefs and prioritize management efforts.  

 

Therefore, accurately detecting underwater fish in coral reef environments is critically 

important. It allows for the estimation of fish species' relative abundance in their natural 

habitats and facilitates the monitoring of their populations. However, as highlighted by 

Weinstein (2018), manual data processing bears resemblances to physical data collection in 

terms of being labor-intensive and time-consuming. Currently, some researchers, such as Afiq-

Firdaus et al. (2023), continue to utilize manual fish counting alongside software tools for 

analyzing fish abundance. While this method can effectively identify and measure fish in 
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images manually, it may not be the most efficient or accurate approach, especially for large-

scale fish monitoring projects. 

  

Recent advancements in machine learning technologies have propelled deep learning to the 

forefront as an invaluable tool for addressing this challenge. As outlined by LeCun et al. (2015), 

deep learning is a subset of machine learning that employs multiple computational layers to 

process complex data, such as raw images and video recordings, which are difficult to analyze 

through traditional methods. Yet, the hurdles of acquiring usable footage in marine settings to 

attain satisfactory computational performance differ significantly from those encountered in 

terrestrial environments. The intricate characteristics of the underwater environment present 

the most significant challenge in detecting and recognizing objects within underwater images 

(Awan et al. 2019; Nair et al. 2021; Shen et al. 2021). The primary difficulty in underwater 

imaging stems from the restricted presence of light, resulting in significant fluctuations in light 

intensity that lead to inadequate luminosity, distortion, and light attenuation (Kong et al. 2018; 

Marshall 2017; Rizzini et al. 2015; Xu & Matzner 2018). Additional obstacles include scale 

variations, complex cluttered backgrounds, arbitrary orientations, and degradation in image 

quality (Li et al. 2022; Yeh et al. 2021). Although these factors may affect the quality of images 

and videos, deep-learning methods have shown remarkable effectiveness in classifying tropical 

reef fish. Besides, Siddiqui et al. (2018) and Xu & Matzner (2018) have presented compelling 

evidence indicating that these methods have outperformed human capabilities in species 

recognition.  

 

Furthermore, employing deep-learning methods for fish detection can alleviate researchers 

from the laborious process of analyzing fish abundance, thereby saving time. Moreover, studies 

conducted by researchers such as Li et al. (2020), have shown that utilizing deep-learning 

methods for underwater fish detection offers a non-intrusive method, facilitating accurate and 

effective monitoring of fish populations and behaviors while safeguarding their natural habitat. 

As asserted by Pagire & Phadke (2022), the integration of Convolutional Neural Networks 

(CNN) in deep learning facilitates the extraction of features from underwater images, enabling 

the classification of these images into different fish species. Numerous researchers have also 

applied the CNN models to develop a smart underwater vision system (UVS), resulting in 

satisfactory performance (Han et al. 2020; Huang et al. 2019; Moniruzzaman et al. 2019; Zhao 

et al. 2019). 

 

The advancement of deep learning and the evolution of more advanced algorithms have led to 

the rapid growth of You Only Look Once (YOLO) architectures. YOLO, a member of the 

family of CNN models, is a leading algorithm for object detection due to its remarkable speed 

and precision. Moreover, it has found applications in numerous research endeavors aimed at 

identifying fish in underwater habitats. As shown in Figure 1, YOLO has evolved through 

multiple iterations and enhancements, resulting in improved performance in object detection, 

faster inference times, and the development of more resilient algorithms applicable across 

diverse domains. Hence, in this study, we have trained various iterations of YOLO models – 

namely, YOLOv7, YOLOv8, and YOLOv9 – using a customized coral reef fish dataset. We 
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then conducted a comparative analysis of their accuracy to determine the most fitting YOLO 

model version for our dataset’s requirements.  

 

 

FIGURE 1. YOLO evolution timeline 
 

 

RELATED WORKS 

 

Various methods have been employed to detect fish and estimate their populations using image 

and video processing algorithms. Initially, Stratchan (1993), identified fish based on their shape 

and color, while Storbeck & Daan (2001), developed 3D models of fish to capture dimensions 

such as height, width, and thickness. However, these methods were applied in controlled 

sampling environments. Detecting and classifying fish underwater without constraints and 

without assuming specific environmental conditions is challenging due to significant variations 

in factors such as water clarity, lighting, and the presence of other objects. To address this, 

previous research by Spampinato et al. (2008), proposed an image-processing method that 

captures the textural patterns of fish in underwater environments. This method enables the 

detection and counting of fish in low-quality, unrestricted underwater footage, demonstrating 

remarkable overall accuracy of up to 85% across a set of 20 underwater videos.  

 

Subsequently, to mitigate the effects of environmental changes, Sheikh & Shah (2005), 

integrated color information into their background pixel modeling in images by using Kernel 

Descriptors within Kernel Density Estimation (KDE). Meanwhile, Yao & Odobez (2007), 

introduced a background modeling method based on texture-specific features calculated using 

local binary patterns. Despite employing these traditional machine learning algorithms and 

image processing techniques, accurately capturing the complex characteristics unique to fish 

in highly dynamic and diverse environments remains challenging. Consequently, Siddiqui et 

al. (2018), have noted that fish detection methods relying on video or image data often fall 

short in real-world settings.  

 

Recently, researchers such as Petrellis et al. (2023) and Salman et al. (2020), have demonstrated 

that deep learning approaches can achieve outstanding accuracy in detecting and classifying 

fish in unrestricted underwater environments, achieving accuracies of approximately 95% and 

87.44%, respectively. In the domain of deep learning, the Convolutional Neural Network 

(CNN) is a specialized algorithm designed for tasks like image recognition and the processing 

of pixel data. It can extract features and offer a more sophisticated approach to addressing 

challenges associated with object detection. Currently, two primary classifications that exist 

for deep learning approaches in object detection. One is the two-stage object detectors 
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exemplified by architectures like Region-based Convolutional Neural Network (RCNN), Fast 

R-CNN, and Faster R-CNN. These types of algorithms typically involve two steps. The initial 

step involves employing a selective search or Region Proposal Net (RPN) to produce potential 

target regions, followed by conducting classification and regression on the proposed regions. 

Although these detectors boast high accuracy, they also exhibit slower detection speeds. 

Another algorithm is the one-stage object detectors exemplified by RetinaNet, Single Shot 

Multibox Detector (SSD), and You Only Look Once (YOLO). The one-stage algorithms 

employ a single network to predict object bounding boxes and class probability scores directly 

from images. While they are less precise compared to the two-stage detectors, they exhibit 

faster detection speeds and are generally easier to train and implement. 

 

As indicated by Redmon et al. (2016), the YOLO algorithm introduces a novel approach to 

target detection by conceptualizing detection as a regression problem. By framing detection as 

a regression problem, the YOLO algorithm obviates the necessity for a complex pipeline. The 

YOLO algorithm utilizes a straightforward CNN architecture to directly manage regression for 

target detection, predicting both the position of the bounding box and the class of the candidate 

box. It has also been applied for detecting fish in underwater settings, yielding promising 

outcomes in terms of both accuracy and speed. Over time, the YOLO architecture has 

undergone evolution, with each iteration introducing new features and enhancements. 

 

As shown in Figure 2, the YOLO model comprises three primary components: the backbone, 

neck, and head, which form its fundamental architecture. The backbone’s primary role involves 

feature extraction from input images, commonly achieved through the utilization of a CNN. 

The neck layer improves feature maps through the integration of varied scales, while the head 

layer utilizes these enhanced feature maps to generate predictions, encompassing bounding box 

coordinates and class probabilities. The backbone component is pivotal in determining the 

overall efficacy of the object detection model. Various iterations of YOLO have implemented 

diverse backbone architectures, including Darknet-19, Darknet-53, CSPDarknet53, 

EfficientNet-B3, and more. Over time, these backbone architectures have undergone evolution 

aimed at enhancing the efficiency and performance of YOLO models. 

 

 

FIGURE 2. General overview of YOLO architecture 
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YOLOv7, proposed by Wang et al. (2023), features the Efficient Layer Aggregation Network 

(ELAN) as its backbone. This architecture is crucial for extracting significant features from the 

input data. Another enhancement in YOLOv7 is the use of anchor boxes, which consist of a set 

of pre-defined boxes with varying aspect ratios tailored for detecting objects of different 

shapes. Notably, some researchers such as Liu et al. (2023) and Yu et al. (2023), have employed 

YOLOv7 as a base model for underwater object detection, achieving promising results with 

mAP values of 89.6% and 73.5%, respectively. 

 

Following this, YOLOv8 was introduced by Ultralytics, the creators of the influential YOLOv5 

model. This iteration is an anchor-free model, meaning predictions are made directly regarding 

the center of an object rather than calculating the offset from predetermined anchor boxes. This 

anchor-free detection reduces the number of box predictions, resulting in faster Non-Maximum 

Suppression (NMS). Researchers have built upon the YOLOv8 model for underwater object 

detection by using a combination of the Pascal VOC dataset and a custom dataset, achieving a 

notable mAP of 86.6% (Liu et al 2023). 

 

The most recent advancement, YOLOv9, developed by an independent open-source team, 

introduces groundbreaking methods such as Programmable Gradient Information (PGI) and 

the Generalized Efficient Layer Aggregation Network (GELAN) (Wang et al. 2024). YOLOv9 

aims to achieve top-tier real-time object detection through innovative strategies that address 

information loss challenges inherent in deep neural networks. By integrating PGI and the 

versatile GELAN framework, YOLOv9 enhances the model’s learning capabilities while 

ensuring the preservation of crucial information during the detection process, resulting in 

outstanding accuracy and performance. Given its recent launch, the application of YOLOv9 

for underwater object detection is still somewhat limited. 

 

METHODOLOGY 

 

DATASET PREPARATION 

 

To attain reliable parameters and models in deep learning, a substantial volume of data samples 

is typically required throughout the training phase. The underwater image dataset utilized in 

this study was sourced from the Institute of Oceanography and Environment (INOS) at the 

University of Malaysia Terengganu. The footage was captured using the Stereo-Diver Operated 

Underwater Video System (Stereo-DOVs) and covers the region of Pulau Bidong and its 

neighboring islands. The operator of the Stereo-DOVs maintained a hovering distance of 

approximately 0.7 meters above the surface, ensuring a horizontal viewpoint with minimal 

water visibility during video capture. All footage was subsequently extracted and transformed 

into image frames using Video Images Master Pro V1.2.8. 

 

For this study, we selected 100 images for training purposes, featuring four distinct fish species 

belonging to the Pomacentridae family: Dascyllus trimaculatus, Chromis viridis, 

Neoglyphidodon melas, and Pomacentrus moluccensis. These species were chosen based on 

the findings of Afiq-Firdaus et al. (2023), who identified them as the predominant reef fish 
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species with some of the highest density values (ind. m⁻³). To ensure the model’s efficiency 

and accuracy, the images were resized from 4608 × 3456 to fit the optimal input size during 

the training phase, which in this case was 640 × 640. The optimal input size was chosen based 

on the standard practices recommended for training YOLO models and empirical testing to 

balance computational efficiency and model accuracy. It is acknowledged that different input 

sizes can affect the models’ performance, and this size was selected to achieve the best results 

for our specific dataset and objectives.  Sample images from the dataset, showcasing the four 

fish species, are depicted in Figure 3.  

 

   
   (a)                                        (b) 

 

   
                                                   (c)                                         (d) 

FIGURE 3. Sample images. (a) Dascyllus trimaculatus, (b) Chromis viridis, (c) 

Neoglyphidodon melas and (d) Pomacentrus moluccensis 

 

After resizing the images, data augmentation methods were employed to expand the training 

set artificially by generating modified versions of the existing images. In this study, the images 

underwent rotations at angles of 45, 135, 225, and 315 degrees, along with a horizontal flip. 

This process resulted in a dataset comprising 1000 images. The dataset was then split into three 

sets: 80% for the training set, 10% for the testing set, and the remaining 10% for the validation 

set. Figure 4 showcases examples of the augmented images. 

 

 

     
                     (a)                                               (b)                                               (c) 
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                         (d)                                              (e)                                             (f) 

FIGURE 4. Sample augmentation of the images. (a) Original image, (b) Horizontal flip, (c) 

45-degree rotation, (d) 135-degree rotation, (e) 225-degree rotation, and (f) 315-degree 

rotation 

 

OBJECT IMAGE ANNOTATION 

 

The purpose of object image annotation is to utilize text or annotation tools to label or classify 

an image, highlighting the data features that a machine learning model needs to identify. In the 

context of fish detection, it is essential to acquire both the fish species information and the fish 

border location information for the image. For this study, we selected LabelImg, a Python-

based software tool, for its compatibility with the YOLO labeling format and its intuitive 

graphical interface to annotate the dataset images. Figure 5 illustrates an instance of the image 

annotation process. 

 

 

FIGURE 5. LabelImg interface during the labeling process 

 

After finishing the labeling process, the relevant image data is systematically stored in 

associated XML files. The XML files contain extensive data necessary for network training, 

encompassing vital information such as the object class and its exact spatial coordinates within 

the images.  
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TRAINING MODELS 

 

In this study, we opted to use Google Colab to train all the YOLO models due to its provision 

of a free GPU, which significantly speeds up the training time and enhances the models' 

accuracy. The training set was used to train the models, while the validation set served to 

monitor the models’ performance during training and to check for overfitting. After completing 

the training process, we assessed the models’ ability to generalize to new, unseen data by 

evaluating them using the test set. Each YOLO model was trained for 100 epochs with a batch 

size of 8. The images were resized to an input size of 640 × 640 to ensure compatibility with 

all models. 

 

EVALUATION METRICS 

 

To assess the performance of the YOLO models in detecting underwater coral reef fish, we 

employed a range of standard metrics commonly used to evaluate such models. These include 

precision, recall, F1 score (F1), and mean average precision (mAP). The equations for 

computing these evaluation metrics are provided as Equations (1), (2), (3), and (4) below:  

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 (1) 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (2) 

𝐹1 𝑠𝑐𝑜𝑟𝑒 = 2 ∗ 
(𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑟𝑒𝑐𝑎𝑙𝑙)

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙
 (3) 

𝑀𝑒𝑎𝑛 𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 (𝑚𝐴𝑃) = 
1

𝑛
∑ 𝐴𝑃 𝑘

𝑘=𝑛

𝑘=1

 (4) 

 

where: 

TP signifies the true positive. 

FP signifies the false positive. 

FN signifies the false negative. 

AP k is the average precision of class k. 

N is the number of classes. 

In object detection, precision indicates the ratio of accurately identified objects to all detected 

objects, while recall signifies the proportion of correctly identified objects to all objects within 

the sample set. The F1 score is a machine learning evaluation metric that measures a model’s 

accuracy by combining precision and recall through a weighted harmonic average. Average 

precision (AP) serves as a metric for assessing the performance of object detection models, 

computing the precision for all elements associated with a specific class or fish species. 

Conversely, the mAP is determined as the numerical average of the aggregated AP values 

across all species, providing an evaluation of the model’s overall performance.  
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EXPERIMENTAL RESULTS 

 

Upon completing the training phase, we implemented the YOLO models to detect fish within 

the test dataset. More specifically, our focus was on detecting four coral reef fish species as 

mentioned in the preceding section. The total training durations for the YOLOv7, YOLOv8, 

and YOLOv9 are approximately 1.793, 1.385, and 2.708 hours, respectively. Table 1 provides 

a summary of the evaluation metrics results of the three YOLO models. The evaluation metrics 

demonstrate that all YOLO models yield outstanding performance, effectively detecting and 

classifying fish species within the test dataset. 

 

TABLE 1. Overall evaluation metrics of trained YOLO models 

YOLO Model Precision (%) Recall (%) F1 Score (%) mAP@0.5 (%) 

YOLOv7 96.0 93.1 94.5 96.6 

YOLOv8 95.7 93.4 94.5 97.9 

YOLOv9 93.7 89.5 91.6 94.3 

 

YOLOv8 outperforms both YOLOv7 and YOLOv9 in mAP@0.5, achieving a 1.3% and 3.6% 

higher score, respectively. The mAP@0.5 denotes the mAP computed at an Intersection over 

Union (IoU) threshold of 50%. IoU measures the overlap between the predicted and ground 

truth bounding boxes, distinguishing between true positives and false positives in detections. 

YOLOv8 stands out for its rapid training time, finishing in approximately 1.358 hours. The 

swift training process and impressive mAP@0.5 score make YOLOv8 an attractive choice as 

the base model for our future study.  

 

Figure 6 below illustrates the progression of this metric throughout the training of all three 

YOLO models over a span of 100 epochs. YOLOv7 and YOLOv8 demonstrate rapid 

convergence, maintaining stability throughout the epochs without notable performance 

degradation, indicating consistent performance across both models. In contrast, YOLOv9 

exhibits a slower convergence rate but it maintains its performance without any significant 

degradation. Although YOLOv8 ultimately achieved the highest value at the end of training, 

YOLOv9’s slower convergence suggests that with additional epochs, it could potentially 

surpass both YOLOv7 and YOLOv8. 

 

Figure 7 below illustrates the effectiveness of the three YOLO models in detecting the four fish 

species within images from the test set. The test set images are utilized to assess the models’ 

performance in generalizing to new, unseen data. In the first row, it shows that both YOLOv7 

and YOLOv8 accurately identify the fish species and precisely place the bounding boxes. 

YOLOv9, on the other hand, shows a couple of false positive detections where it mistakenly 

identifies unknown objects as one of the classes it was trained on.  

 

mailto:mAP@0.5
mailto:mAP@0.5
mailto:mAP@0.5
mailto:mAP@0.5
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FIGURE 6. Graph of the mAP@0.5 of the three YOLO models throughout 100 epochs 

during the training phase 

 

                                               
                     (a)                                                (b)                                              (c)  

 

     
          (d)                                             (e)                                                (f)  

FIGURE 7. Detection results of the YOLO models on the test set. First column: (a) and 

(d) YOLOv7. Second column: (b) and (e) YOLOv8. Third column: (c) and (f) YOLOv9 

 

Moving on to the images detected in the second row, we examined those containing multiple 

fish species. While it is clear that all the YOLO models successfully detect and identify the 

majority of fish species present in the images, there are a few instances of detection failure. 

This might be due to insufficient diversity within the training image dataset. Significantly, the 

YOLOv7 model excels in detecting the majority of fish instances within these images. This is 

mailto:mAP@0.5
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noteworthy considering that during training and validation, YOLOv7 demonstrated lower 

recall levels and mAP@0.5 values as compared to YOLOv8.  

 

Previously, we examined images from the test set that might display similarities in terms of 

underwater environment with those used in training and validation. To further the assessment 

of the models, we conducted supplementary tests utilizing freely available images from the 

internet, as illustrated in Figure 8. These images were chosen from the Global Biodiversity 

Information Facility (GBIF) database and were sourced from the citizen science platform, 

known as iNaturalist. These underwater images constitute a completely new dataset for the 

models, featuring diverse lighting conditions, varying distances, and other unique underwater 

settings. 

 

     
                          (a)                                          (b)                                          (c) 

     
                           (d)                                          (e)                                          (f) 

     
                           (g)                                          (h)                                          (i) 

     
                            (j)                                           (k)                                          (l) 

FIGURE 8. Detection results on images from the GBIF database. First column: (a), (d), (g) 

and (j) YOLOv6. Second column: (b), (e), (h) and (k) YOLOv7. Third column: (c), (f), (i) 

and (l) YOLOv8 

 

mailto:mAP@0.5


216 

 

In the first row, it is evident that none of the three YOLO models successfully detected every 

instance of Dascyllus trimaculatus within the image. Both YOLOv7 and YOLOv8 precisely 

detected just a single instance within the images with high confidence levels. The most notable 

discovery is with YOLOv9, which incorrectly classified the detected fish as another class. This 

misclassification could be attributed to YOLOv9's constraints in distinguishing objects with 

similar appearances, particularly when the training data is insufficient or when object features 

lack distinctiveness. 

 

In the second row, which showcases numerous instances of Dascyllus trimaculatus amid 

significantly hazier underwater conditions, YOLOv7 and YOLOv8 accurately detected seven 

and eight instances, respectively. However, YOLOv7 detected two fish within a single 

bounding box. In contrast, YOLOv9 correctly identified only two instances but also made an 

additional misclassification. 

 

The third row displays multiple instances of Pomacentrus moluccensis under considerably 

dimmer underwater lighting conditions. Here, YOLOv7 exhibited the highest performance, 

detecting six fish. YOLOv9 successfully detected four fish, whereas YOLOv8 detected only 

three. Although YOLOv8 achieved the highest mean Average Precision (mAP) value, this 

result highlights its limitations in detecting smaller objects or objects under diverse lighting 

conditions that were not adequately represented in the training dataset. 

 

Finally, in the fourth row, which contains a couple of Chromis viridis fish in a slightly hazier 

underwater environment, all YOLO models fail to accurately detect and identify all instances 

of fish. YOLOv7 makes a false positive detection by misidentifying the fish as another species 

within the trained class, while YOLOv8 makes a false negative by not detecting any fish in the 

image. Remarkably, the YOLOv9 model successfully detects one fish present in the image. 

This observation is significant, especially given that YOLOv9 exhibited lower recall and 

mAP@0.5 values during training and validation compared to the other two models. 

 

CONCLUSION 

 

This study comprehensively assessed YOLO models (YOLOv7, YOLOv8, and YOLOv9) for 

detecting coral reef fish underwater, with a particular emphasis on four dominant fish species. 

All the YOLO models were trained for 100 epochs, and the assessment of various performance 

metrics showed a balanced performance across all models, particularly highlighting YOLOv7 

and YOLOv8. YOLOv7 demonstrated superior precision, whereas YOLOv8 showcased 

outstanding recall. Both YOLOv7 and YOLOv8 attained an impressive F1 score of 94.5%. 

YOLOv8 achieved the highest mAP@0.5 value at 97.9%. Even though YOLOv9 is the newest 

version of the YOLO family, it demonstrated multiple occurrences of false positives, indicating 

misclassification of species multiple times. The visual results demonstrated effective detection 

of relevant instances, although certain limitations emerged, such as the smaller size of fish, and 

challenging lighting underwater conditions.  
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Considering the evaluation metrics and visual results, YOLOv7 and YOLOv8 emerge as 

appealing options as the foundational models for our forthcoming research. Future research 

should incorporate more extensive image datasets and enhanced variability in image data to 

improve the model’s generalization capabilities. We also intend to explore various optimization 

strategies aimed at enhancing the performance of the chosen YOLO models. This could entail 

fine-tuning hyperparameters or altering the YOLO model’s architecture by adjusting 

parameters such as the number of layers, feature maps, or filters.  
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