Harmonic excitation response of standard ultrasonic horn designs for machining nomex honeycomb core composite

Khurram Hameed Mughal, and Nasir Hayat, and Zia ul Rehman Tahir, and Shahzad Ahmad, and Asif Ali Qaiser, and Fazal Ahmad Khalid, (2024) Harmonic excitation response of standard ultrasonic horn designs for machining nomex honeycomb core composite. Jurnal Kejuruteraan, 58 (1). pp. 49-62. ISSN 0128-0198

[img] PDF
2MB

Official URL: https://www.ukm.my/jkukm/volume-3601-2024

Abstract

Ultrasonic horn plays a vital role in achieving vibration amplitude at tool end (VATE) by enhancing output displacement of piezoelectric ultrasonic transducer suitable for efficient machining of advanced composites. Higher vibration amplitude enhances ultrasonic machining quality, surface integrity and dimensional accuracy of Nomex honeycomb composite (NHC) while reducing cutting forces. Furthermore, low stress concentrations allow ultrasonic tool to have more safety factor and longevity. Ultrasonic horn is designed to enhance displacement amplitude of piezoelectric ultrasonic transducer and get optimum VATE while keeping stresses in acceptable limits to avoid failure at very high operating frequency of ultrasonic machining system. In this research, variety of standard ultrasonic horns (SUH) were designed with same length and end diameters; and were tested under similar operating conditions, using finite element method. The ultrasonic actuation of the horn exploits the first axial mode of horn vibration. Harmonic response analysis was carried out to determine axial modal frequencies (AMF), VATE, stresses, and factor of safety for performance evaluation. VATE attained by step horn was found to be greatest among all other SUHs for frequency ratio greater than one, but may be prone to early failure due to high stress concentrations. VATE achieved by third order Bezier, Gaussian, exponential, catenoidal, conical and second order Bezier horns were found less than that of step horn by 11.7 %, 16.6 %, 16.7 %, 17 %, 16.73 % and 18 % respectively. However, 44.2 %, 43.43 %, 42.5 %, 43.5 %, 42.8 % and 37.67 % reduction of stresses was achieved by Gaussian, exponential, catenoidal, conical, second and third order Bezier horns respectively. Outcomes of present work would be beneficial for designers, researchers, scientists, and manufacturers of ultrasonic machine tool to select appropriate SUH designs according to requirements.

Item Type:Article
Keywords:1. Ahmad, S., Zhang, J., Feng, P., Yu, D., Wu, Z., & Ke, M. 2020. Processing technologies for Nomex honeycomb composites (NHCs): A critical review. Composite Structures 250: 112545. 2. Cao, Y., Zhu, Y., Li, H. N., Wang, C., Su, H., Yin, Z., & Ding, W. 2020. Development and performance of a novel ultrasonic vibration plate sonotrode for grinding. Journal of Manufacturing Processes 57: 174-186. 3. Jung, W., Ra, J., & Park, K. 2012. Design optimization of ultrasonic horn for micro-pattern replication. International Journal of Precision Engineering and Manufacturing 13(12): 2195-2201. 4. Kang, D., Zou, P., Wu, H., Duan, J., & Wang, W. 2019. Study on ultrasonic vibration–assisted cutting of Nomex honeycomb cores. The International Journal of Advanced Manufacturing Technology 104(1): 979- 992. 5. Ke, M., Jianfu, Z., Pingfa F., Zhijun, W., Dingwen, Y., Ahmad, S. 2019. Design and Implementation of a Mini Ultrasonic Cutting System for Nomex Honeycomb Composites. Proceedings of 2019 16th International Bhurban Conference on Applied Sciences & Technology (IBCAST). Islamabad, Pakistan. 6. Mughal, K. H., Bugvi, S. A., Qureshi, M. A. M., Khan, M. A., & Hayat, K. 2021. Numerical evaluation of contemporary excavator bucket designs using finite element analysis. Jurnal Kejuruteraan 33(3). 7. Mughal, K. H., Qureshi, M. A. M., Qaiser, A. A., & Khalid, F. A. 2021. Numerical Evaluation of State of the Art Horn Designs for Rotary Ultrasonic Vibration Assisted Machining of Nomex Honeycomb Composite. 8. Mughal, K.H., Qureshi, M. A. M., and Raza, S. F. 2021. Novel ultrasonic horn design for machining advanced brittle composites: A step forward towards green and sustainable manufacturing. Environmental Technology & Innovation: 101652. 9. Mughal, K.H., Qureshi, M. A. M., Qaiser, A. A., Khalid, F. A., Maqbool, A., Raza, S. F., Ahmad, S. and Zhang,. J. 2022. Numerical investigation of the effect of uniform cutout on performance of ultrasonic horn for machining nomex honeycomb core material. Jurnal Kejuruteraan 34(3). 10. Mughal, K. H., Qureshi, M. A. M., Qaiser, A. A.,Khalid, F. A., Maqbool, A., Raza, S. F., ... & Zhang, J. 2022, August. Tubular Bezier Horn Optimum Design for Ultrasonic Vibration Assisted Machining of Nomex Composite. In 2022 19th International Bhurban Conference on Applied Sciences and Technology (IBCAST) (pp. 26-32). IEEE. 11. Mughal, K. H., Bugvi, S. A., Jamil, M. F., Baig, B. T., Ahmad, T., Irfan, M., ... & Gondal, A. A. 2022. Enhancement of Aerodynamic Performance of High Speed Train Through Nose Profile Design: A Computational Fluid Dynamics Approach. Jurnal Kejuruteraan, 34(6), 1237-1250. 12. Mughal, K. H., Ahmad, N., Hayat, N., Qureshi, M. A. M., Bugvi, S. A., Jamil, M. F., & Khan. M. A. 2023. Design and performance evaluation of a novel ultrasonic welding sonotrode for Langevin transducer using FEA approach. International Journal of Industrial Engineering: Theory, Applications, and Practice, 2023; 30(4): 971-985. 13. Mughal, K. H., Jamil, M. F., Qureshi, M. A. M., Qaiser, A. A., Khalid, F. A., Maqbool, A., ... & Abbas, S. Z. 2023. Investigation of rotary ultrasonic vibration assisted machining of Nomex honeycomb composite structures. The International Journal of Advanced Manufacturing Technology, 129(11), 5541-5560. 14. Mughal, K. H., Bugvi, S. A., Jamil, M. F., Qureshi, M. A. M., Khalid, F. A., Qaiser, A. A. Tubular cubic polynomial sonotrode for green and sustainable ultrasonic welding technology. Green Manufacturing Open. 2023; 1(3): 14. 15. Munir, M. M., Mughal, K. H., Qureshi, M. A. M., Qaiser, A. A., & Khalid, F. A. (2023). Design of Novel Longitudinally–Torsionally Coupled Ultrasonic Bezier Horns for Machining Advanced Hard and Brittle Materials. Journal of Vibration Engineering & Technologies, 1-18. 16. Naseri, R., Koohkan, K., Ebrahimi, M., Djavanroodi, F., & Ahmadian, H. 2017. Horn design for ultrasonic vibration-aided equal channel angular pressing. TheInternational Journal of Advanced Manufacturing Technology 90(5): 1727-1734. 17. Nguyen, H. T., Nguyen, H. D., Uan, J. Y., & Wang, D. A. Yu, J., Luo, H., Nguyen, T. V., Huang, L., Liu, B., & Zhang,2014. A nonrational B-spline profiled horn with high displacement amplification for ultrasonic welding. Ultrasonics 54(8): 2063-2071. 18. Ouyang, J., Qiu, Z., & Zhang, Y. 2022. Design and development of two-dimensional ultrasonic horn with B-spline curve based on orthogonal method. Ultrasonics 123: 106713. 19. Pang, Y., Feng, P., Zhang, J., Ma, Y., Zhang, Q. 2020. Frequency coupling design of ultrasonic horn with spiral slots and performance analysis of longitudinaltorsional machining characteristics. The International Journal of Advanced Manufacturing Technology.2 20. Rai, P. K., Yadava, V., & Patel, R. K. 2020. Design of Bezier profile horns by using optimization for high amplification. Journal of the Brazilian Society of Mechanical Sciences and Engineering. 21. Ray, A. 2018. Design and performance analysis of ultrasonic horn with a longitudinally changing rectangular cross section for USM using finite element analysis. Journal of the Brazilian Society of Mechanical Sciences and Engineering 40(7): 1-11. 22. Rao, S. S. 2016. Mechanical Vibrations, Pearson. Razavi, H., Keymanesh, M., & Golpayegani, I. F. 2019. Analysis of free and forced vibrations of ultrasonic vibrating tools, case study: ultrasonic assisted surface rolling process. The International Journal of Advanced Manufacturing Technology 103(5): 2725- 2737. 23. Roy, S. 2017. Design of a circular hollow ultrasonic horn for USM using finite element analysis. The International Journal of Advanced Manufacturing Technology 93(1): 319-328. 24. Wang, D. A., Chuang, W. Y., Hsu, K., Pham, H. T., 2011. Design of a Bézier-profile horn for high displacement amplification. Ultrasonics (51): 148–156. 25. Wang, J., Sun, Q., Teng, J., Jin, P., Zhang, T., & Feng, J. 2018. Enhanced arc-acoustic interaction by steppedplate radiator in ultrasonic wave-assisted GTAW.Journal of Materials Processing Technology 262:19-31. 26. Yu, J., Luo, H., Nguyen, T. V., Huang, L., Liu, B., & Zhang Y. 2020. Eigenfrequency characterization and tuning of Ti-6Al-4V ultrasonic horn at high temperatures for glass molding. Ultrasonics 101: 106002. 27. Zhang, Y., Liu, T., Tizani, W. 2018. Experimental and numerical analysis of dynamic compressive response of Nomex honeycombs. Composites Part B
Journal:Jurnal Kejuruteraan
ID Code:25123
Deposited By: Mohd Hamka Md. Nasir
Deposited On:16 Apr 2025 03:18
Last Modified:16 Apr 2025 03:18

Repository Staff Only: item control page