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 Tail Dependence Estimate in Financial Market Risk Management:
 Clayton-Gumbel Copula Approach

(Nilai Kebersandaran Ekor Bagi Anggaran Dalam Pengurusan Risiko Pasaran 
Kewangan: Pendekatan Clayton-Gumbel Copula)

A. SHAMIRI., N.A. HAMZAH & A. PIRMORADIAN 

ABSTRACT

This paper focuses on measuring risk due to extreme events going beyond the multivariate normal distribution of joint 
returns. The concept of tail dependence has been found useful as a tool to describe dependence between extreme data 
in finance. Specifically, we adopted a multivariate Copula-EGARCH approach in order to investigate the presence of 
conditional dependence between international financial markets. In addition, we proposed a mixed Clayton-Gumbel copula 
with estimators for measuring both, the upper and lower tail dependence. The results showed significant dependence 
for Singapore and Malaysia as well as for Singapore and US, while the dependence for Malaysia and US was relatively 
weak.
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ABSTRAK

Kajian ini menumpu kepada pengukuran risiko yang disebabkan oleh kejadian ekstrim yang berlaku di luar batasan 
taburan multivariat normal bagi pulangan bercantum. Konsep kebersandaran ekor telah didapati berguna sebagai 
alat bagi menerangkan kebersandaran di kalangan data ekstrim dalam kewangan. Secara spesifik, kami mengadaptasi 
pendekatan multivariate Copula-EGARCH untuk mengkaji kewujudan kebersandaran bersyarat antara pasaran kewangan 
antarabangsa. Kami juga mencadangkan campuran copula Clayton-Gumbel dengan penganggar bagi mengukur kedua-
dua had atas dan bawah ekor kebersandaran. Keputusan kajian ini menunjukkan kebersandaran yang signifikan antara 
Singapura-Malaysia serta Singapura-Amerika Syarikat, manakala kebersandaran untuk Malaysia-Amerika Syarikat 
adalah lemah secara relatif.

Kata kunci: Copula; kebersandaran ekor; model EGARCH; ukuran risiko

INTRODUCTION

In financial risk management, a risk is indicative of any 
uncertainty that might trigger losses. In portfolio management 
for example, the risk with a variety of asset returns posed 
a challenge in trying to attain a complete picture of these 
risks joint distribution and the respective model. The ability 
of such risk measures is important as it will assist financial 
managers on how best to (1) position one’s investment and 
(2) enhance one’s financial risk protection. 
 Capturing comovement between financial asset returns 
with linear correlation has been the staple approach in 
modern finance since the birth of Harry Markowitz’s 
theory. Linear correlation is the appropriate measure of 
dependence if asset returns follow a multivariate normal 
(elliptical) distribution. However, the statistical analysis of 
the distribution of individual asset returns frequently finds 
fat tails, skewness and other non-normal features which 
leads to underestimation of this measure (Ang & Bekaert 
2002; Ang & Chen 2002; Bae et al. 2003; Longin & Solnik 
2001). If the normal distribution is inadequate, then it is 
not clear how to appropriately measure the dependence 
between multiple asset returns. 

 It is well known that in financial markets large 
changes tend to be followed by larger changes and small 
changes tend to be followed by smaller changes. In other 
words, the financial markets are sometimes more volatile 
and sometimes less. A large number of researchers have 
also found ample evidence that conditional variance 
of financial time series are interacting and that the 
cross market correlation coefficients are conditional on 
market volatility. The estimates of this correlation tend 
to increase, particularly during crises when markets 
are more volatile (Engle 2002). This correlation is not 
related directly to market volatility but it increases in 
bear markets rather than in bull markets. Besides that, 
in order to evaluate the risk due to extreme events, 
it is necessary to measure the tail dependence that is 
concordance between less probable values of variables. 
This suggests a significant dependence in the tails of the 
joint distribution of asset returns to be analyzed with a 
possibly asymmetric model. 
 Fortunately, the theory of copulas provides a flexible 
methodology for the general modelling of multivariate 
dependence. In general, a copula is a function that links 
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n-dimensional distribution function (marginals) to its one 
dimensional margins and is itself a continuous distribution 
function which characterizes the model’s dependence 
structure.
 Since the copula methods provide a way to isolate the 
dependence structure of the portfolio from the individual 
margins of the assets, flexibility in modelling the portfolio 
is provided. A specific copula is chosen and this depends 
on the composition of the portfolio. Empirical studies 
(Engle 2002; Hamo et al. 1990; Hong 2001) showed that 
market volatility increases in bear market rather than in 
bull market and this implies that the dependence structure 
should allow for tail dependency among assets. However, 
much less attention has been paid to the possibility of 
asymmetric dependence between financial markets. 
 In this paper, instead of relying on symmetric copula 
models in measuring dependence we may extend the case 
to asymmetric copulas, allowing for both positive and 
negative effects to take place. It is to our knowledge, 
the first attempt to investigate the dependence structures 
between international financial markets, in the context 
of mixed Clayton-Gumbel copulas. We find significant 
evidence of dependence structure between the US and 
Singapore as well as Singapore and Malaysia, along 
with some asymmetry. As an evidence of asymmetric 
dependence, we find that the magnitude of the lower 
tail dependence is much greater than the upper tail 
dependence, suggesting two financial markets exhibit 
greater dependence during market downturns than 
market upturns. On the contrary, the tail dependence 
coefficient for the bivariate series KLCI-SP500 exhibit 
weak relationship among both series, which may be due 
capital control in Malaysia.
 The aims of this paper were to investigate the presence 
of conditional tail dependence between international 
markets and measure the dependence using a conditional 
Copula-EGARCH approach (Jondeau & Rockinger 2006). 
The Copula-EGARCH model can capture the dependence 
in the uncorrelated errors ignored by all existing EGARCH 
models. Moreover, a copula function has been exploited to 
describe the whole dependence structure that characterizes 
the relationship between variables. To allow for an 
asymmetric impact of positive and negative shocks on the 
conditional volatility (leverage effect), the EGARCH model 
is employed; for every EGARCH model, the corresponding 
Copula-EGARCH model can be constructed. In the paper 
we analyse some bivariate Archimedean copula functions 
characterized by a different degree of concordance between 
extreme events.
 The reminder of this paper is organized as follows: 
next section introduces the concepts of copula and its 
estimation methods, with a special emphasis on introducing 
a new copula model. Methods of marginal models are 
described in the Marginal Models section. This is followed 
by empirical application sections and Conclusion which 
contains some concluding remarks. 

COPULA 

COPULA AND DEPENDENCy 

Although a normal distribution is easy to use for measuring 
dependency, it is generally inconsistent in the presence 
of asymmetry and excess kurtosis which usually arise in 
financial data (Abu & Shamiri 2007; Abu et al. 2009). In 
this paper, we used the recently popular copulas to construct 
uncorrelated dependent errors. The principle characteristic 
of a copula function is its ability to decompose the joint 
distribution into two parts: marginal distributions and 
dependence structure. Different dependence structures can 
combine the same marginal distributions into different joint 
distributions. Similarly, different marginal distributions 
under the same dependence structure can also lead to 
different joint distributions.

Definition (Copula): A function C:[0,1]2 → [0,1] is a copula 
if it satisfies (i) C(u1, u2) = 0 for u1 = 0 or u2 = 0 (ii) C(u1,1) 
= u1,C(u2,1) = u2 for all u1 and u2 in the unit interval [0,1]; 
and (iii)  (–1)i+j C(u1i,u2,j) ≥  0 for all (u1,u2,j) in 
[0.1] with u1,1 < u1,2 and u2,1 < u2,2.
 The relationship between a copula and joint distribution 
function is illuminated by Sklar’s (1959) theorem. 
Sklar’s theorem shows that for continuous multivariate 
distributions the univariate margins can be separated from 
the dependence structure which is completely captured by 
a copula function.

Sklar’s Theorem: Let F12(.) be a joint distribution function 
with marginal distribution function Fi(.) for i = 1,2. Then 
there exists a copula function C, such as that for all x1, 
x2 in , 

 F12(x1,x2) = C(F1(x1), F2(x2)) (1)

 Conversely, if C is a copula and Fi(.) are marginal 
distribution functions, then F12(.) defined above is a joint 
distribution with margins Fi(.).

Corollary 1: Let denote the generalized 
inverses of the uniform marginal distribution function u1, 
u2, then for every (u1,u2) in the unit n-cube, there exists a 
unique copula C:[0,1]2 such that F12 = 
C(u1,u2) where = inf[xi : Fi(xi) > ui]; for i = 1,2. 
 Given the copula density is defined as: 

  (2)

 Then using the chain rule, the joint density may be 
recovered using

  (3)
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 The above result showed that it is always possible 
to specify a bivariate density by specifying the marginal 
densities and a copula density. In other words, this means 
that the copula has all the information about dependence 
structure. Some of the copula properties such as being 
invariant to strictly increasing transformation of the random 
variables and the ability to measure the concordance 
between random variables are indeed very useful in the 
study of dependence. Therefore measuring tail dependence 
that is concordance between less probable values of 
variables, which is also a property of copula, has a great 
importance in the study of financial risk management. 
 In a bivariate context, let Fi(.), i = 1,2, be the marginal 
distribution functions, X1, X2 are the residuals generated 
from equation (27) and let u be a threshold value. The upper 
tail coefficient, λU, is then defined as the limit when u tends 
to one, of the probability that the distribution function of 
the variable X1 exceeds u, given that the corresponding 
function for X2 exceeds u,

  (4)

 Since λU ∈ (0,1], we can say that for λU ∈ (0,1], X1 
and X2 are asymptotically dependent on the upper tail; and 
when if λU = 0, X1 and X2 are asymptotically independent. 
It is also easy to show in terms of copula function that 

  (5)

 The concept of lower tail dependence can be defined in 
a similar way. Let Fi(.), i = 1, 2, be the marginal distribution 
functions of two variables, X1, X2 and let u be a threshold 
value, then λL, is defined as 

  (6)

 In terms of copula function, the lower tail dependence 
takes the form,   

  (7)

 Kendall’s tau is a measure of concordance between 
random variables (X1, X2) that measures the difference of 
probabilities between concordant and discordant random 
variables

 τ = P[X1– )(X2– )>0]–P[X1– )(X2– )<0] (8)

where  is a second independent pair with the 
same distribution as (X1, X2). 

 However, it is possible to 
express Kendall’s tau in term of the copula (Nelsen 2006; 
Embrechts et. al. 2002) that the Kendall’s tau τ correlation 
depends only on the copula C (and not on the marginal 
distributions of X1 and X2) and is given by

  (9)

 As a measure of concordance based on copulas, which 
means that it is invariant to increasing transformations 
of its arguments, Kendall’s tau can capture nonlinear 
dependences that were not possible to measure with linear 
correlation.
 The Gumbel and Clayton copulas may be used to 
represent the dependence structure implicit in a multivariate 
distribution, because of their properties, particularly in the 
context of modelling multivariate financial return data 
(for example daily relative or logarithmic price changes 
on number stocks). The Gumbel and Clayton copulas 
belong to the Archimedean copula family. The family of 
Archimedean copulas (Cherubini et al. 2004; Joe 1997) can 
be built starting from the definition of a generator function 
Φ : I ∈ R+, which is continuous, decreasing and that Φ(1) = 
0. Specifically, let Φ be a generator, then an Archimedean 
copula CA can be expressed as 

 CA(u1,u2) = Φ–1(Φ(u1) + Φ(u2)). (10)

 The Archimedean copulas share the important features 
of symmetry and associativity. 
 The Clayton copula is given by

 CC(u1,u2) = [ + –1]–1/θ (11)

 The copula has a generator, Φ(t) = (t–θ–1)
 
while 

Φ–1(t) = (1+t)–1/θ. When θ > 0, it is completely monotonic. 
With θ → 0, CC(u1,u2) = u1u2 and when θ → ∞ the upper 
Frechet-Hoefding bound is attained. Therefore upper tail 
dependency is equal to zero and the lower tail dependency 
is λL = 2–(1/θ). Kendall’s tau of this copula can be defined as 

 
 The Gumbel copula which belongs to the extreme 
values (EV) family (Gumbel, 1960) is expressed as 

  (12)

 The generator Φ(t) = (-ln t)ζ while Φ–1(t) = exp(–t1/ζ).
 The parameter ζ controls the strength of dependence; ζ = 

1, implies CG(u1,u2) = u1u2,which reflects no dependency; 
when ζ = +∞, is indicative of a perfect dependence. Here, 
the lower tail dependence is zero, λL = 0, and upper tail 
dependence takes the form λU = 2–2–(1/ζ). The corresponding 
Kendall’s tau can be defined as τ = 1–

 In this paper, we bring together what is known 
about the Archimedean copula Clayton and Gumbel, 
particularly with regard to its extremal properties, and 
present some extensions of the CC and CG copulas that 
overcome their limitations through extreme value theory. 
Clearly, the Archimedean copulas (CC and CG) introduce 
above cannot explain all the tail behaviour observed on 
financial markets. CC, displays only negative (lower) tail 
dependence,  = 2–1/θ, while CG which is probably the 
most common EV copula exhibits only positive (upper) tail 
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dependency,  = 2–2–1/ζ. To overcome to this problem, 
the Joe- Clayton copula has been introduced. The Joe-
Clayton copula belongs to the family BB7 (Joe 1997) and 
is expressed as

 
 

(13)

where  and 

 Although, the Joe-Clayton copula shows both the 
negative (lower) and positive (upper) tail dependence, 
respectively = 2–1/θ and = 2–21/k respectively, it does 
not count for extreme events. To solve this difficulty a new 
combination of CC and CG copulas will be introduced. 
The new copula introduced here, arises from the fact 
that any combination of two Archimedean copulas is an 
Archimedean copula (Nelsen 2006). Thus, in order to 
obtain copulas which have upper and lower tail dependence 
that are not necessarily symmetrical, we employ a convex 
linear combination of these two copulas. That is, for  π ∈ 
[0,1] and two Archimedean copulas, namely, Clayton CC 
and Gumbel CG, we define

 CCG(u1,u2) = πCC (u1,u2)+(1-π)CG(u1,u2) (14)

 We denote (14) as a mixed Clayton-Gumbel (CG) 
copula. The properties of these copulas can be derived from 
those of CC and CG. The upper and lower tail dependence 
of the mixed Claytom-Gumbel are given by

  
and

 respectively, of the form,

 
 
= (1 – π)  (15)

and 

 =  (16)

 Likewise, the kendall’s τ of the copula CCG defined in 
(14) can be expressed as,

 τCG = π2τC + (1 – π)2 τG + 2π(1 – π)

  [4�l2
CC(u1,u2)dCG(u1,u2) –1]  

       = π2τC + (1–π)2τG + 2π(1 – π)

   (17)

 Equation (17) can also be expressed as functions of 
the parameters θ and ζ. Since θ and ζ are the respective 
parameters of CC and CG, (17) becomes – equation (18) – 
for π ≠ 0,1 where,

 τCG = πθ/(θ + 2)+( 1– π)(1 – 1/ζ)+2π(1 – π)
 
  (18)

where

  (19)

and

  (20)

 For a given τCG, , and π deduced from (18), the 
estimates of θ and ζ are obtained from (19) and (20). Here, 
the negative (lower) and positive (upper) tail dependence 
are given respectively by,

 = π2–1/θ (21)

and

 = (1 – π)(2 – 21/ζ). (22)

MAxIMUM LIKELIHOOD ESTIMATION

Consider a bivariate distribution F12 with margins 
distributions Fi, pdf f i and a copula with density c. Let α 
be the vector of marginal parameters of Fi and θ be the 
vector of copula parameters. The parameters of the joint 
density to be estimated is η = (α',θ')' . From (3) the log-
likelihood function is then

  (23)

and the exact maximum likelihood estimator (MLE) is 
defined as 

 = argη max l(η)

 The numerical computation of the exact MLE may 
be difficult if there are many parameters in the marginal 
models and in the copula. Instead of maximizing the 
likelihood (23) as a function of η, the copula parameters 
θ may be estimated using a two-stage procedure proposed 
by Joe and Xu (1996) called the inference function for 
margins (IFM). Using IFM, the marginal distributions Fi 
are estimated. This could be done using parametric models 
(e.g., normal or student’s-t distribution), the empirical CDF, 
or a combination of an empirical CDF with an estimated 
generalized Pareto distribution for the tail. The marginal 
parameters α are estimated by
   

(24)

 Based on the estimates , we next estimate the 
association parameters θ via

  
(25)
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 Under standard regularity conditions, the IFM 
estimators are consistent and asympotically normally 
distributed. In particular, Joe (1997) showed that the IFM 
estimate often nearly as efficient as the MLE estimate.

MARGINAL MODELS

The idea of using copula is to construct a bivariate 
distribution where we first need to make an assumption 
about each univariate marginal distribution, i.e. student-t 
distribution. For ease of exposition, we estimate asymmetric 
auto-regressive EGARCH (1, 1) model of Nelson (1991) for 
the time series of financial market returns. This model looks 
at the conditional variance and tries to accommodate for 
the asymmetric relation between financial market returns 
and volatility changes. Consider a d-dimensional time 
series sample of length T. For each univariate time series, 
we specify the marginal model,

  (26)

 εi,t|It–1~ t(v) for i ∈ {1,…,d}  

 ln   (27)

where xi,t  
represents univariate market return series, 

εi,t is the conditional mean of the series, vi 
is the error 

component and assumed iid student-t distributed with 
iv degrees of freedom,  denotes the variance, and 

It–1 is the information set at time t – 1. The Ki as in (26) 
is determined by optimizing the Akaike Information 
Criterion (AIC). The EGARCH model in (27) differs from 
the standard GARCH model in two main aspects. First, it 
allows positive and negative shocks to have a different 
impact on volatility. Second, the EGARCH model allows 
large shocks to have a greater impact on volatility than 
the standard GARCH model. Note that when εi,t–1 is 
positive which is indicative of a bull market, the total 
effect of εi,t–1 is (1 + γi)| εi,t–1|; in contrast, when εi,t–1 is 
negative which suggests a bear market, the total effect of 
εi,t–1 is (1 – γi)| εi,t–1|. Bear markets usually have a larger 
impact on volatility, and the value of γi is expected to 
be negative.
 Using the probability integral transform we can infer 
for the univariate marginal distribution by forming the 
vectors ut =  We will mainly focus 
on the Clayton, Gumbel, Joe-Clayton and the newly 
introduced Clayton-Gumbel copulas since the first three 
are frequently used in the literature for measuring general 
dependence, whereas the latter is good at modelling 
both, the upper and lower tail dependencies. These types 
of copula models will provide us with a full picture of 
dependence structures in financial markets. 

EMPIRICAL APPLICATION

The objective of this section is to measure the tail 
dependence with a copula-EGARCH model. To elucidate 

the effect of the distinct feature in the tail, we adopt the 
same normal marginal distribution so that the difference 
arises only from the copula density.
 We examine daily data of three stock indexes 
returns: the Strait Times Index (STI) of Singapore, the 
Kuala Lumpur Composite Index (KLCI) of Malaysia and 
Standard and Poor index (SP500) of USA for the period 
January 01st, 1998 through December 31st, 2008. The 
data sets collected from DataStream consist of daily 
closing price with a total of n = 2780 observations. In the 
database, the daily return  Ri,t,i = 1,…,9 consisted of daily 
closing price Pi,t, 

which is measured in local currency and 
computed as Ri,t = ln(Pi,t/Pi,t–1).
 Before proceeding to the estimation of the marginal 
and copula models, it is useful to assess their descriptive 
statistical properties. Table 1 reports the descriptive 
statistics of the daily financial market returns for the time 
series under consideration. Notably, in terms of daily 
returns SP500 has the lowest mean returns with negative 
sign (-0.002%). The mean returns of KLCI and STI financial 
markets are positive with 0.014% and 0.004% respectively. 
It is clear that Malaysian financial market offer higher 
average returns than the most advanced financial markets, 
that is, US and Singapore financial markets but these high 
returns are also characterized by larger volatility, which is 
common for emerging financial markets and is consistent 
with previous studies (Abu et al. 2009; Miyakoshi  
2003).  
 Table 1 display the skewness, kurtosis, and related tests 
of the of the data collected. The Ljung-Box Q-statistics 
Q(10) and Q2(10) which test for serial correlation in 
daily and squared returns, respectively, rejects the null 
hypotheses of non-serial correlation. These time series 
display typical features of stock returns such as fat tail, 
spiked peak, and persistence in variance. In contrast, the 
robust version for skewness and kurtosis (namely, Rob.
Sk and Rob.Kr), do not suggest non-normality. With 
evidence of ARCH effects as indicated by LM test, it is 
possible to proceed to the next step of the analysis which 
focus on the bivariate EGARCH(1, 1) modelling of the 
dynamics of market’s volatility in estimating the marginal 
distributions. 
 Table 2, presents the estimation results for the 
parameter and the use of asymmetric EGARCH model seems 
to be justified with all asymmetric coefficients significant 
at standard levels. The EGARCH model is reasonably good 
at describing the dynamics of the first two moments of the 
series as shown by the Ljung-Box statistics for the squared 
standardized residuals with lag 10. LM test for presence 
of ARCH effects at lag 10, indicate that the conditional 
hetroskedasity that existed when the test was performed on 
the pure return series (Table 1) are removed. The leverage 
effect term γi in the marginal EGARCH models are statistically 
significant, furthermore with γi  negative sign, as expected 
that negative shocks imply a higher next period conditional 
variance than positive shocks, indicating that the existence 
of leverage effect is observed in returns of the financial 
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market series. Briefly, looking at the overall results, we can 
argue that EGARCH model adequately explains the data set 
under investigation. The marginal models seem to be able 
to capture the dynamics of the first and second moments of 
the returns of the financial time series.
 As mentioned earlier, the main aim of this paper is 
to investigate the presence of conditional tail dependence 
between international markets and to measure it using a 
new copula CCG approach. In this framework, we have used 
the Inference for the Margins (IFM) method, estimating 
into separate steps the margins and the copula parameters. 
Firstly, the marginal distributions of each stock index are 
independently estimated via maximum likelihood through 
an EGARCH model. After transforming the standardized 
residuals into uniform margins, we have estimated the above 
three copula functions for each pair of index stock returns.

 The time series plots of the returns are given in Figure 
1. The three return series behave similarly over time, 
exhibit periods of high and low volatility, and sometimes 
take on extremely large and small values, particularly 
STI and SP500 series for the more recent period. Figure 
2 gives the scatter plot of the bivariate residuals from 
the fitted EGARCH models. The fitted residuals match the 
join behaviour of returns in the middle of the distribution 
fairly well, but do not capture the observed extreme values 
in the tail of the distribution. Therefore, a flexible way 
to successfully model the joint behaviour of financial 
returns, after modelling the marginal distributions, is with 
copulas. 
 Table 3 reports the results of the analysis; the upper 
tail dependence coefficient turns out to be higher for 
STI-KLCI with all the estimated copula functions. This 

TABLE 2. Parameter estimates of marginal models

Ψi αi βi γi Q(10) Q2(10) LM(10)
STI -0.166**

[0.015]
0.237**
[0.023]

0.981**
[0.004]

-0.229**
[0.053]

27.88** 10.788 10.035

KLCI -0.141**
[0.015]

0.192**
[0.021]

0.981**
[0.004]

-0.358**
[0.067]

100.58** 2.786 2.709

SP500 -0.082**
[0.011]

0.120**
[0.016]

0.991**
[0.002]

-0.508**
[0.099]

11.74 12.781 12.777

     
Note: **,* Significant at 1% and 5% respectively. Standard errors are given in square brackets.

TABLE 1. Summary statistics for daily equity market returns

Mean Std. Skewness Rob.Sk Kurtosis Rob.Kr Q(10) Q2(10) LM(5)
STI 0.0036 1.311 -0.1214 -0.0219 8.5771 0.2701 17.895 912.2** 344.8**
KLCI 0.0135 1.506 0.5695 -0.0043 60.2395 0.3758 85.29** 1365.9** 787.6**
SP500 -0.002 1.336 -0.1187 0.0134 10.5733 0.3204 61.95** 2096.7** 572.1**

Rob.Sk and Rob.Kr are outlier-robust versions of skewness and kurtosis described as Sk2 and Kr2 in Kim and White (2004). **,* Significant at 1% and 5% respectively.

FIGURE 1. Daily log returns on (a) STI, (b) KLCI and (c) SP500 indices

(a)

(b)

(c)
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implies that extreme positive returns in a market can have 
a stronger impact on the other with respect to extreme 
negative returns. Turning to STI-SP500, both the tail 
dependences appears to be equally relevant. However, the 
tail dependence coefficient for the bivariate series KLCI-
SP500 exhibit weak relationship among both series. This 
is no surprise for the Malaysian economic has not been 
hurt much by the recent US financial crisis. 
 For the choice among the estimated copula functions, 
we have reported in Table 3 the log likelihood (logl) and 
Akaike’s information criterion (AIC). In all cases, CCG 
copula seems to show the best performance. The close 
match between the contour plot of the fitted CCG copula 

and the empirical copula, given is Figure 3, indicates a 
good fit to the data.

CONCLUSIONS

In this paper we proposed a mix CCG copula with both 
upper and lower tail dependence, to measure risk in the 
tails. In order to investigate the presence of a conditional 
dependence between international markets, it is useful 
adopting a Copula-EGARCH approach, analysing the 
dependence in both the tails. The methodology consists 
of modelling each stock index returns distribution via a 
EGARCH-type model using a copula function to join the 

FIGURE 2. Scatter plots of bivariate residuals from fitted EGARCH models on (a) STI-SP500, 
(b) STI-KLCI and (c) KLCI-SP500 indices
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FIGURE 3. Empirical copula and fitted Clayton-Gumbel copula of the bivariate series 
(a) STI-SP500 (b) STI-KLCI and (c) KLCI-SP500 respectively
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margins into a multivariate distribution. . In the empirical 
analysis we have used the CC, with lower tail dependence, 
the CJC and the  CCG copulas with both upper and lower 
tail dependence. The result showed that CCG copula has a 
superior fit to our data compare to the other copulas used 
in this study.
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