γ-TOCOTRIENOL PROTECTS AGAINST HYDROGEN PEROXIDE-INDUCED REPLICATIVE SENESCENCE BY REGULATING APOPTOTIC PATHWAY AND MODULATING TELOMERASE ACTIVITY

Norhazira AR, Chua KH, Wan Zuirah WN, Suzana M

Department of Biochemistry, Universiti Kebangsaan Malaysia Medical Centre, Kuala Lumpur, Malaysia

Background:
Oxidative stress has been shown to be associated with apoptosis (programmed cell death) in a number of cell systems. Apoptosis is controlled by a diverse range of intracellular signaling that regulates genes and proteins such as apoptotic and anti-apoptotic molecules. Besides, oxidative stress also resulted in telomere shortening and progressive reduction of telomerase activity leading to cellular senescence. Vitamin E has revealed many important molecular properties, such as scavenging free radicals, modulating signal transduction in antioxidant and non-antioxidant manners and plays a role in regulating apoptosis. In this study, we developed H₂O₂-induced premature senescence model of human skin fibroblasts to investigate the protection of γ-tocotrienol against cellular senescence.

Materials and Methods:
Primary human diploid fibroblasts derived from circumcision foreskins were cultured until passage 4 and were treated with 1 µM γ-tocotrienol. Exposure to 20 µM H₂O₂ was carried out for two weeks to induce replicative senescence. Real time RT-PCR was performed to determine the expression of pro-apoptotic genes (Bax and Bid) and anti-apoptotic genes (Bcl-2 and Bcl-xL). Proteins expression of Bax and Bcl-2 was determined by Western blotting. Telomerase activity was detected using telomeric repeat amplification protocol (TRAP) while telomere length was determined by Southern Blotting.

Results:
Exposure to H₂O₂ up regulated Bax and increased its protein expression, decreased Bcl-2 protein expression, shortened telomere length and reduced telomerase activity in HDFs (p<0.05). While, treatment with γ-tocotrienol was found to down regulate Bax and increased telomerase activity in H₂O₂-induced cells (p<0.05).

Conclusion:
Our data suggested that γ-tocotrienol inhibited the progression of apoptosis as evidenced by inhibition of Bax expression. γ-Tocotrienol also showed protection against telomerase activity loss in H₂O₂-induced cells. This finding revealed the molecular mechanism of γ-tocotrienol in preventing H₂O₂-induced replicative senescence in human diploid fibroblasts.

Keywords:
γ-Tocotrienol, apoptosis, telomerase, fibroblasts, aging