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ABSTRACT  

In this paper we present a developed couple block method for solving first order ordinary 
differential equations (ODEs). The coupled block method consists of two proposed block 
methods i.e the two point two step block method of order five and three point two step block 
method of order six. Therefore, these methods will estimate the numerical solutions at two and 
three points simultaneously within a block. The proposed block method is derived using 
Lagrange interpolation polynomial and is presented as in the simple form of the Adams 
Moulton type. The developed code is implemented using variable step size and order. The 
stability of the methods is also studied. Numerical results are presented to compare the 
performance of the developed code to the existence block method. 

Keywords: Block method; variable step size and order; ordinary differential equations  

 
ABSTRAK  

Dalam makalah ini dikemukan suatu kaedah blok gandingan yang telah dibangunkan untuk 
menyelesaikan persamaan pembezaan biasa peringkat pertama. Kaedah blok gandingan terdiri 
daripada dua kaedah blok yang dicadangkan, iaitu kaedah blok dua titik dua langkah peringkat 
lima dan kaedah blok tiga titik dua langkah peringkat enam. Oleh itu, kaedah ini akan 
menghampiri penyelesaian berangka pada dua dan tiga titik secara serentak dalam blok. 
Kaedah blok yang dicadangkan telah diterbitkan dengan menggunakan interpolasi polinomial 
Lagrange dan dipersembahkan dari jenis Adams Moulton yang ringkas. Kod yang 
dibangunkan telah dilaksanakan menggunakan panjang langkah dan peringkat yang berubah. 
Kestabilan kaedah ini juga dikaji. Hasil berangka diberikan untuk membandingkan prestasi 
kod yang dibangunkan dengan kaedah blok yang sedia ada.   

Kata kunci: Kaedah blok; panjang langkah dan peringkat yang berubah; persamaan 
pembezaan biasa  

 

1. Introduction 

This paper considers the development of the codes for solving first order ODEs of the form 
  

( ),, yxfy =′       ( ) ,00 yxy =      [ ]bax ,∈ .        (1)  
 

Mathematical models of problems in many physical science, social science, ecology as 
well as economics situations often involve the change of some variable with respect to 
another. The problems of the decay of radioactive material, population growth, chemical 
reactions the motion of a rotating mass around another body, and so forth may be modelled by 
Eq. (1). 

Block method for numerical solution had been proposed by several researchers such as 
Milne (1953), Rosser (1967), Sommeijer et al. (1992), Burrage (1993) and Rao and Mouney 
(1997). They pointed out that application of block method can provide a faster solution to the 
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problem since this method can simultaneously produces several numerical approximations 
within a block.  

Gear and Watanabe (1974), Suleiman (1985), Shampine (1987), Lambert (1991) and Omar 
(1999) developed the variable step size and order multistep method for solving ODEs. 
However, the current multistep method using variable step size and order strategy as 
described by the researchers above involved tedious computations of divided difference and 
recurrence relation in computing the integration coefficients in the code. This will affect the 
execution times during the implementation of the code.  

In the literature, Omar (1999) developed a variable step size and order two point block 
method for solving ODEs which the order k is restricted in the range 121 ≤≤ k as the 
integration progressed. A variable step size and order two point block methods of order five, 
seven and nine in the simple form of the Adams Moulton type has been proposed by Majid 
(2008) for solving ODEs.  

In this paper, we introduce a coupled block method of order k and p where k < p for 
solving Eq. (1) using variable step size and order. The couple block method is consist of two 
block methods i.e. m-point block method of order k and n-point block method of order p 
where nm ≠  and pk ≠ . These methods are presented as in the simple form of the Adams 
Moulton type and all the coefficients involved in the code are stored in the proposed methods. 

The aim of this paper is to develop a variable step size and order coupled block method of 
order five and six. The code is a combination of two point two step block method of order 
five which has been proposed by Majid (2008) and the new developed three point two step 
block method of order six. The proposed coupled block method will move two points or three 
points simultaneously within a block in order to reach the end of the interval. Hence, the 
developed code is expected to improve the total number of steps and achieve computational 
times faster compared to the code in Omar (1999). 

2. Formulation of the Block Method 

2.1.  Two point two step block method  

In Figure 1, the solutions of  1+ny  and 2+ny  with step size h  are simultaneously computed in 
a block using three back values at the point { }2

0=− jjnx , of  the previous two steps with step size 

rh .   
 
 
 
                                                                 
 
 
 
                                                       Figure 1: Two point two step block method 
 

The two point two step block method is the combination of predictor of order four and the 
corrector of order five. The derivation and implementation of the method can be referred in 
Majid (2008). The following is the corrector formula in terms of r . 
 
 
 

 
                 rh         rh            h           h  

 
 

   2−nx       1−nx         nx        1+nx      2+nx  
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The 1st point 
 

( ) ( ) [ 2
22

21 )20153()12(
)12)(2)(1(240 ++ +++−

+++
+= nnn frrrr

rrrr
hxyxy  

                  nn frrrrrfrrrr )100457)(12)(2)(1()807518)(2(4 2
1

22 ++++++++++ +  
                         ]21 )157)(2()307)(12(4 −− +++++− nn frrfrr . 
 
The 2nd point 
 

( ) ( ) [ 2
22

22 )9155)(12(
)1)(2)(12(15 ++ +++

+++
+= nnn frrrr

rrrr
hxyxy  

  2 2 2
14 ( 2)(10 15 6) ( 2)( 1)(2 1)(5 1)n nr r r r f r r r r f++ + + + + + + + −  

                         ]21 )2()12(4 −− +−++ nn frfr . 
 

2.2.  Three point two step block method  

In Figure 2, the three point two step block method will compute three points simultaneously 
in a block by using three back values at the points { }2

0n j j
x − =

, of  the previous two steps with 

step size rh .   
 

 
 
  

 
Figure 2: Three point two step block method 

 

The corrector formula of the three point two step block method was derived using Lagrange 
interpolation polynomial and the interpolation points involved are ( ) ( )2 2 3 3, , , ,n n n nx f x f− − + +… . 
The three values of 1 2,n ny y+ +  and 3ny +  can be obtained by integrating over the interval 
[ ] [ ]1 2, , ,n n n nx x x x+ +  and [ ]3,n nx x +  respectively using MAPLE and the following corrector 
formula in terms of r can be obtained: 
 
The 1st point 
 

( ) ( )
2 2

1 3 2
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60 6(2 3)( 3) 4( 1)( 2)n n n n
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2(2 1)( 1) 12n n

r r r rf f
r r r+

+ + + +
+ +

+ +
 

               1 22 2

(17 76 ) (17 38 )
( 1)( 2)( 3) 4 (2 1)( 1)(2 3)n n

r rf f
r r r r r r r r− −

⎤+ +
− + ⎥+ + + + + + ⎦

. (2)  

 
                rh       rh          h         h          h  

 
 

         2−nx      1−nx       nx      1+nx      2+nx     3+nx  
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The 2nd point 
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The 3rd point 
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During the implementation of the method, the choices for the next step size will be limited 

to half, double or the same as the current step size. In case of successful step size, the ratio 
r for the next constant step size is 1.0. Whenever the step size is double, the ratio r is 0.5. In 
case of step size failure, r is 2.0. The corrector formula in Eq. (2), Eq. (3) and Eq. (4) will be 
simplified by substituting the value of r . 

The three point two step block method is the combination of predictor of order five and the 
corrector of order six. The interpolation points involved for obtaining the predictor formula 
for 1 2,n ny y+ +  and 3ny +  are ( ) ( )4 4, , , ,n n n nx f x f− − … . 

3. Implementation  

Firstly, the code will start with two point two step block method of order five. It is 
implemented in PE(CE)s mode where P and C denote the application of predictor and 
corrector respectively while E denotes the evaluation of function f for the first two blocks. 
The s indicates the number of iteration that is needed for the two point two step block method 
corrector formula to be converges using the convergence test: 
  

( 1) ( )
2 2

s s
n ny y+
+ +− < 0.1×TOL. 

 
The convergence test for three point two step block method is ( 1) ( )

3 3
s s

n ny y+
+ +− < 0.1×TOL. 

After the successful convergence test, local error for two point and three point block 
methods will be calculated to control the integration step. The local error for two point block 
method at 2nx +  can be estimated as ( ) ( )1 2 2 1k n nE y k y k− + += − −  where ( )2ny k+  is the 
corrector formula of order k  and ( )2 1ny k+ −  is a similar corrector formula of order 1k − . 
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Similarly, local error for three point block method at 3+nx  can be calculated as 
( ) ( )3 31k n nE y k y k+ += + − . 

Suppose that the local error test ≤E TOL is accepted in the integration step, the next order 
and step size have to be determined. We choose the order for which the estimates step size on 
the next step is the maximum. Therefore, one of the methods of orders k  and 1k +  can be 
used as the next order. Having available 1−kE  and kE , the maximum step size are as follows: 

 
1

1
1

,
2.0

k

k old
k

TOLh h
E−

−

⎛ ⎞
= × ⎜ ⎟×⎝ ⎠

      

1
1

2.0

k

k old
k

TOLh h
E

+⎛ ⎞
= ×⎜ ⎟×⎝ ⎠

          (5)  

 
where oldh  is the step size from the previous block and let maxh  be the maximum step size 

in Eq. (5). The order which give the maxh will be the order on the next block. Therefore, the 
approximation of values y  can be simultaneously computed using two point or three point 
block methods on the next block. In our code, to consider raising the order only can be done 
after having enough points for the higher order method to be used in the next step. 

In our code, the maxh in Eq. (5) is not the final new step size for next block. The final step 
size after a successful step is given by             
  

maxnewh C h= ×                                                  
if ( )2new oldh h≥ ×  then 2new oldh h= ×                                                   
else new oldh h=                                                                                                       (6) 

 
where 0.8C =  is a safety factor. The purpose of having the safety factor is to give a more 

conservative estimate of the new step size. The algorithm when the step failure occurs is    
  

1
2new oldh h= × .                                                                                                       (7)  

 
The test in Eq. (6) and Eq. (7) will allow the new step size to vary only by constant, 

doubling or halving.  

4. Absolute Stability 

In the development of the numerical methods, it is of practical importance to study the 
absolute stability region for those methods. All the stability regions in this paper were 
obtained using Mathematica programming. 

The absolute stability of two point and three point block methods were derived in the 
previous section on a linear first order problem when those methods are applied to the test 
equation   
 

yfy λ==′ . (8)  
 
The stability region is investigated when the step size is constant, double and halved for each 
of the method. For example, the following equation represent the formula of the three point 
two step block method at r=1.0, 
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( ) ( ) ( )211231 11938028029311
1440 −−++++ +−++−+= nnnnnnnn ffffffhxyxy                              

( ) ( ) ( )11232 3411434
90 −++++ −+++−+= nnnnnnn fffffhxyxy             

( ) ( ) ( )211233 32111411421951
160 −−++++ +−++++= nnnnnnnn ffffffhxyxy . (9)  

 Now, substituting Eq. (8) in Eq. (9) and form a matrix equivalent to 
 

( ) 01 =+− −mm YChBAY  (10)  
                 
where, 
 

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−−−

−−

−−

=

λλλ

λλλ

λλλ

hhh

hhh

hhh

A

160
511

160
219

160
114

90
1

90
341

90
114

1440
11

1440
93

1440
8021

, 
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

100
100
100

B , 

 

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−

−

−

=

λλλ

λλλ

λλλ

160
114

160
21

160
3

90
34

90
10

1440
802

1440
93

1440
11

C , 
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

+

+

+

3

2

1

n

n

n

m

y
y
y

Y , 
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
= −

−

−

n

n

n

m

y
y
y

Y 1

2

1  .   (11)  

 
The stability polynomial of three point two step block method at r=1.0 is obtained by solving 

( ) 0det =+− ChBtA as follow: 
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 (12)  

 

where λhh =
_

 and the stability region is in Figure 4. The stability regions for two point two 
step block method is shown in Figure 3. 
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Figure 3: Stability region for two point two step block method  
when r=1.0, r=2.0 and r=0.5 

 

            
 

Figure 4: Stability region for three point two step block method  
when r=1.0, r=2.0 and r=0.5 

 
The stability region is bounded by the dotted points. Figures 3-4 clearly showed that the 

stability region is getting smaller when the step size being constant (r=1.0) or double (r=0.5) 
for both proposed methods. In addition, the stability region is the largest when the step size is 
halved (r=2.0) for all the methods. We also observed that the stability regions for higher order 
method are smaller compared to the stability regions for lower order method.      

5. Results and Discussions 

The efficiency of the developed codes in the previous sections are tested using the following 
problems: 
 
Problem 1:                      Nonlinear Krogh’s problem (Non stiff)  

                          ,2
iiii yyy +−=′ β  4,3,2,1=i  

         ( ) ,10 −=iy      [ ]20,0  
         ,2.01 =β  ,2.02 =β  ,3.03 =β  4.04 =β  

          Solution:  ( ) ,
1 x

i

i
iec

xy β
β

+
=  )1( iic β+−=  

 
                                       Source:  Johnson & Barney (1976) 
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Problem 2:  A two-body orbit problem (Mildly stiff)  

,31 yy =′  ,42 yy =′  ,3
1

3 r
yy −=′  ,3

2
4 r

yy −=′  2
2

2
1 yyr +=   

                          ( ) ,101 =y  ( ) ,002 =y  ( ) ,003 =y  ( ) ,104 =y      [ ]20,0  
Solution:  ( ) ( ),cos1 xxy =  ( ) ( ),sin2 xxy =   

    ( ) ( ),sin3 xxy −=  ( ) ( ),cos4 xxy =  
 

Source: Hairer et al. (1993) 
 
Problem 3:  ,21 211 yyy ++=′   

,341 212 yyy ++−=′  
( ) ,101 =y  ( ) ,202 =y      [ ]100,0  

Solution:  ( ) ,15
1 +−= −xx eexy  

    ( ) ,12 5
2 −+= −xx eexy  

 
Source: Bronson (1973) 

 
The notations used in the tables are as follows: 
 
TOL   Tolerance 
MTD   Method employed 
TS   Total steps taken 
FS   Total failure steps 
MAXE  Magnitude of the maximum error 
AVEERR Magnitude of the average error 
FCN  Total function calls 
Time  The execution time taken in microseconds 
CB(5,6)           Implementation of coupled block method (two and three points)  of order five 

and six 
2PBVSO       Implementation of  two point block method of variable step size and order in  
  Omar(1999)  
 
The errors calculated are defined as:   
  

( )
( ) ( )( )

( )( )
i it t

i t
i t

y y x
e

A B y x

−
=

+
                                                 

 
where ( )t

y  is the t -th component of the approximate y . A =1, B =0 correspond to the 
absolute error test. A =0, B =1 correspond to the relative error test and finally A =1, B =1 
correspond to mixed error test. The relative error test is used for Problem 1 and Problem 3 
while the mixed error test is utilised for Problem 2. The maximum error and average error are 
defined as follow: 
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MAXE = ( )( )1 1
max max i ti SSTEP i N

e
≤ ≤ ≤ ≤

 and        

                                             

AVEERR = 
( )

))()((
1 1

SSTEPNP

e
SSTEP

i

N

i
ti∑ ∑

= =                                               

 
where P  is the number of point, N  is the number of equations in the system and SSTEP  is 
the number of successful steps. 

The performance of the codes were written and executed in C language. The following 
tables showed the numerical results  for the tested problems. 

 

Table 1:  Comparison between CB(5,6) and 2PBVSO for Solving Problem 1 

TOL MTD TS FS MAXE AVEERR FCN TIME(ms) 
10-4 CB(5,6) 

2PBVSO 
32 
36 

0 
0 

3.25632(-6) 
1.52382(-4) 

9.29801(-7) 
1.27857(-5) 

222 
109 

767 
1239 

10-6 CB(5,6) 44 0 2.04522(-8) 4.15156(-9) 420 1266 
 2PBVSO 53 0 8.43893(-7) 3.18774(-7) 160 1673 

10-8 CB(5,6) 
2PBVSO 

76 
118 

0 
0 

1.88864(-10) 
1.81094(-8) 

7.87324(-11) 
9.31300(-9) 

747 
355 

2159 
3350 

10-10 CB(5,6) 
2PBVSO 

143 
264 

0 
0 

2.73984(-12) 
2.01525(-10) 

1.22357(-12) 
1.10543(-10) 

1422 
793 

4079 
7399 

 

Table 2:  Comparison between CB(5,6) and 2PBVSO for Solving Problem 2 

TOL MTD TS FS MAXE AVEERR FCN TIME(ms) 
10-4 CB(5,6) 

2PBVSO 
46 
52 

0 
0 

9.02471(-5) 
5.02384(-2) 

1.40442(-5) 
6.30896(-3) 

541 
157 

1428 
1682 

10-6 CB(5,6) 
2PBVSO 

97 
102 

0 
0 

6.59849(-7) 
3.59812(-3) 

1.87380(-7) 
4.94070(-4) 

1043 
307 

2747 
3216 

10-8 CB(5,6) 
2PBVSO 

123 
228 

0 
0 

1.69570(-8) 
8.47692(-5) 

2.83364(-9) 
1.22402(-5) 

1616 
685 

3858 
7115 

10-10 CB(5,6) 
2PBVSO 

275 
537 

0 
0 

2.80919(-11) 
1.06158(-6) 

4.58084(-12) 
1.60873(-7) 

3144 
1612 

8026 
16805 

 

Table 3:  Comparison between CB(5,6) and 2PBVSO for Solving Problem 3  

TOL MTD TS FS MAXE AVEERR FCN TIME(ms) 
10-4 CB(5,6) 

2PBVSO 
989 
511 

0 
0 

1.02050(-4) 
2.25449(-1) 

5.00269(-5) 
1.04599(-1) 

11767 
3690 

16205 
10598 

10-6 CB(5,6) 
2PBVSO 

1237 
1543 

0 
0 

9.45001(-6) 
5.23500(-4) 

4.65692(-6) 
2.58489(-4) 

18377 
11264 

22139 
29129 

10-8 CB(5,6) 
2PBVSO 

3070 
5945 

0 
0 

2.64591(-8) 
8.03553(-6) 

1.31565(-8) 
4.00485(-6) 

36703 
43624 

50258 
102028 

10-10 CB(5,6) 
2PBVSO 

7650 
14550 

0 
0 

2.92513(-10) 
1.01089(-7) 

1.14954(-10) 
5.04638(-8) 

91641 
115674 

125499 
249808 
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The numerical results in Table 1-3 showed the advantage of using CB(5,6) method over 
the 2PBVSO method in terms of accuracy. It is obvious that the proposed method has better 
maximum error and average error at all tolerances. It can be observed that generally the total 
number of steps taken by CB(5,6) method is less than the total number of steps taken by 
2PBVSO method in all the tested problems. The proposed method shows greater  reduction in 
the total number of steps at smaller tolerances.  

Based on the numerical results, we observed that in most cases the execution times of 
CB(5,6) is faster than 2PBVSO for solving the given problems at all tolerances; even though 
the function calls in CB(5,6)is more than the function calls in 2PBVSO.    
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Figure 5: The total steps and execution times of CB(5,6) and 2PBVSO for solving Problem 1 

 

 

0

5000

10000

15000

20000

0
100
200
300
400
500
600

10(-4) 10(-6) 10(-8) 10(-10)

Ex
ec

ut
io

n 
Ti

m
es

To
ta

l S
te

ps

Tolerance

The Total Steps and Execution Times of CB(5,6) and 2PBVSO 
for Solving Problem 2

2PBVSO CB(5,6) 2PBVSO CB(5,6)
 

Figure 6: The total steps and execution times of CB(5,6) and 2PBVSO for solving Problem 2 
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Figure 7: The total steps and execution times of CB(5,6) and 2PBVSO for solving Problem 3 
 

The graphs in Figure 5-7 clearly showed that the CB(5,6) code reduced the total number of 
steps to almost one half at smaller tolerances. Generally, the gaps between the execution times 
line of both methods indicates that CB(5,6) is more efficient than 2PBVSO in the tested 
problems. 

6. Conclusion 

In this paper, we have considered the performance of the coupled block method that consist of 
two point two step and three point two step block methods for solving system of ODEs using 
variable step size and order. The developed coupled block method has shown the superiority 
in terms of total number of steps, maximum error, average error and execution times over the 
2PBVSO method. 
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