THE REGENERATION OF DENTAL HARD TISSUES FROM CULTURED RAT TOOTH BUD CELLS

Nur Raihanah M1,2, Mohd Nazimi AJ3, Khairil Aznan MK4, Alida M5, Safura Anita B5, Jasmina QZ5, Rifqah N3, Ruszymah BHI1,2, Marina MB8, Roszalina R1,3

1Tissue Engineering Centre, Universiti Kebangsaan Malaysia Medical Centre, Kuala Lumpur, Malaysia.
2Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Kuala Lumpur, Malaysia.
3Department of Oral and Maxillofacial Surgery, 4Orthodontics and 5Operative Dentistry, Faculty of Dentistry, Universiti Kebangsaan Malaysia Medical Centre, Kuala Lumpur, Malaysia.
6Department of Oral Biology, Universiti Malaya, Kuala Lumpur, Malaysia

Background:
The incidence of children with missing primary and adult teeth is high. The main aim of our study is to engineer teeth using cultured tooth bud cells seeded onto PLGA scaffold.

Materials and Methods: Three- to five-days old post-natal (dpn) Lewis rat tooth bud cells were cultured and then seeded onto 3mmx5mm PLGA scaffold. The PLGA scaffold was coated with fibrin. The tooth constructs were grown in the subcutaneous of nude mice for eight weeks, and then harvested. For characterization of the cells, RT-PCR and immunocytochemistry were performed. Dentin Sialophosphoprotein (DSPP) and Amelogenin Precursor were the primers used in this study. AMELX and PCK-26 were the antibodies for immunocytochemistry. For in vivo analysis, Micro CTScan was done at four, six, and eight weeks to observe the hard tissue formation of tooth construct in the subcutaneous of nude mice. Haematoxylin and Eosin had been carried out to observe the histological formation after harvesting.

Results:
For cell characterization, Dentin Sialophosphoprotein (DSPP) and Amelogenin Precursor were positively expressed. Immunocytochemistry staining demonstrates positive staining for both antibodies; AMELX and PCK-26. After eight weeks implantation, hard tissue formations were observed using Micro CTScan. For H&E analysis, extracellular matrix and residual PLGA were observed.

Conclusions:
Implantation of cultured Lewis rat tooth bud cells incorporated with PLGA into subcutaneous of nude mice showed promising results for tooth tissue engineering.

Keywords:
Tissue engineering, tooth bud cells, PLGA