Species Identification of Coagulase Negative Staphylococci (CoNS) Isolates in Universiti Kebangsaan Malaysia Medical Centre (UKMMC)

Nurul Azirah Mohamad Sani, Hassriana Fazilla Sapri, Ainihayati Noordin, Hui-min Neoh* and Salasawati Hussin*

Department of Medical Microbiology and Immunology, Faculty of Medicine, Universiti Kebangsaan Malaysia; UKM Medical Molecular Biology Institute (UMBI), Universiti Kebangsaan Malaysia

Received on 15/12/2010 / Accepted on 23/05/2011

ABSTRACT

Coagulase negative Staphylococcus (CoNS) are common colonizers of the human skin but has become increasingly recognized as agents of clinically significant infections. At the Universiti Kebangsaan Malaysia Medical Centre (UKMMC), the prevalence of CoNS among staphylococcus genus in 2009 was 47.1%. The aim of this study was to identify Staphylococcus epidermidis, S. saprophyticus and S. xylosus from the CoNS and MRCoNS (methicillin resistant CoNS) collected in 2009 using a multiplex PCR approach with primers specific for each species. Our results showed that S. epidermidis is the most common species among both MRCoNS and CoNS isolates in UKMMC. Among 1142 CoNS strains, 68.4% were S. epidermidis, 1.3% were S. saprophyticus while 30.3% were non-typeable (other species). A total of 659 CoNS strains have been identified as methicillin resistant (MRCoNS); where 68.1% were S. epidermidis, 1.5% was S. saprophyticus and 30.3% were from other CoNS species. S. xylosus was not identified among the isolates.

INTRODUCTION

Coagulase negative Staphylococci (CoNS) are common colonizers of the human skin and was once considered relatively avirulent and probably a contaminant when isolated from clinical specimens. However, these organisms have become increasingly recognized as agents of clinically significant infections [1], especially in immunocompromised patients who have prostheses and other invasive medical devices in place [2]. Therefore, patients warded in burn units as well as neonatal and pediatric intensive care units have a high risk for CoNS infections [3].

Besides their pathogenicity, CoNS are also inherently resistant to antimicrobial agents like methicillin [4]. Methicillin resistant CoNS (MRCoNS) are clinically important as they are resistant to all β-lactam agents and other commonly used antimicrobial agents. Subsequently, an outbreak of MRCoNS has the potential of causing widespread antimicrobial resistance in a hospital setting, causing additional problems to patient management in terms of antimicrobial prescription. CoNS like S. epidermidis is more likely to be multidrug resistant compared to other CoNS species [5], therefore it has become increasingly important to rapidly identify these organisms for better patient management.

Two species of CoNS commonly associated with human infection are S. epidermidis and S. saprophyticus. S. epidermidis is well documented as a pathogen in cases of bacteraemia, prosthetic valve endocarditis, and prosthetic joint infections. S. saprophyticus is recognized as an opportunistic pathogen in urinary tract infections, particularly in young sexually active females. S. xylosus has very occasionally been identified as a cause of human infection and has been associated with pyelonephritis in humans.

As a pilot study into staphylococcal strains isolated in our university’s medical centre, we collected index strains of Staphylococcus sp. isolated in 2009, and determined the prevalence of CoNS among Staphylococcus genus in our hospital. We also identified S. epidermidis, S. saprophyticus and S. xylosus from these isolates using a modified PCR protocol.

MATERIALS AND METHODS

BACTERIAL STRAINS

A total of 2426 staphylococcal related infections were recorded at the Universiti Kebangsaan Malaysia Medical Centre (UKMMC) in 2009. Index isolates from these cases were collected and established as strains. Strains that were identified as CoNS via coagulase and Dnase test were then stocked at -80°C in Brain Heart Infusion broth (Oxoid ltd, England) and 40% glycerol from time of isolation for further use.
ANTIMICROBIAL SUSCEPTIBILITY TESTING

To determine the antibiogram of our collection of CoNS and identify MRCoNS among these isolates, antimicrobial susceptibility testing was performed for all collected strains using disk diffusion method on muller hinton agar (Oxoid Ltd, England) according to Clinical Laboratory Standard Institute (CLSI) [6] recommendation. Antibiotics used in the test include penicillin, erythromycin, oxacillin, gentamicin, ciprofloxacin, mupirocin, fusidic acid, teicoplanin and vancomycin.

GENOMIC DNA EXTRACTION

Genomic DNA of tested CoNS was extracted using DNeasy Blood & Tissue Kit (Qiagen USA) according to the manufacturer’s instructions. The concentration and purity of DNA was measured using Nanodrop spectrophotometer (NanoDrop 2000, Thermo Scientific, USA). Extracted DNA was stored at -20°C till further use.

Table 1. Nucleotide sequences of primers used in the study

<table>
<thead>
<tr>
<th>Primers</th>
<th>PCR product size (bp)</th>
<th>Sequence (5'–3')</th>
<th>Annealing positions on Gene</th>
</tr>
</thead>
<tbody>
<tr>
<td>Xyl-F</td>
<td>539</td>
<td>AACGCAGAAGGTATAAATTAATGG</td>
<td>1-25</td>
</tr>
<tr>
<td>Xyl-R</td>
<td></td>
<td>AACGCAGAAGGAATTCAGCG</td>
<td>539-520</td>
</tr>
<tr>
<td>Sap 1</td>
<td>221</td>
<td>TCATAAAATTTCTAATATTTAC</td>
<td>169-193</td>
</tr>
<tr>
<td>Sap 2</td>
<td></td>
<td>AGGCTGACCCATAATAGAGAA</td>
<td>379-355</td>
</tr>
<tr>
<td>Se705-1</td>
<td>124</td>
<td>ATCAAAAAATGGGAACCTTTTCA</td>
<td>21-45</td>
</tr>
<tr>
<td>Se705-2</td>
<td></td>
<td>CAAGAGCGTGGAGAAGATATCA</td>
<td>145-121</td>
</tr>
</tbody>
</table>

Figure 1. Multiplex PCR for CoNS species. Lane M, 100-bp molecular size DNA ladder (Promega); lane 1, negative control S. aureus 81/108 (108bp); lane 2, positive control S. epidermidis C.2 (124bp); lane 3, positive control S. saprophyticus C.1334 (221bp); lanes 4-8 & 10-11, S. epidermidis isolates from patient; and lane 9, S. saprophyticus isolate from a patient.

RESULTS AND DISCUSSION

Coagulase and Dnase tests on 2426 staphylococcal strains used in this study revealed that 1142 of these strains were CoNS, giving a prevalence of 47.1%. From the MPCR, 68.4% of the strains were S. epidermidis, 1.3% were S. saprophyticus, while 30.3% were from other species. S. epidermidis was also the most prevalent species in MRCoNS (68.1%), followed by S. saprophyticus (1.5%) and other CoNS species (30.3%). On the other hand, some
studies identified *S. haemolyticus* as the most prevalent CoNS species in their hospitals [8, 9]. The predominance of *S. epidermidis* among CoNS and MRCoNS isolates found in our study is similar to the majority of previous studies [4,10,11,12,13,14]. This is not surprising, as *S. epidermidis* is the most ubiquitous normal flora of the human body [5] plus the fact that implants and prostheses are easily contaminated with this species if proper infection control and aseptic techniques were not adhered during surgical or implant procedures. In the study by Anne et al on 242 strains, as many as 67.4% strains were found to be *S. epidermidis*, while no *S. saprophyticus* isolate was detected [11].

Conventional phenotypic tests such as oxidation/fermentation of glucose in Hugh/Leifson medium, V oges-Proskauer reaction and susceptibility to novobiocin have long been established for the identification of *Staphylococcus* species [15,16]. However, these tests yielded false positive and false negative results frequently [15,16,17,18]. With the development of molecular techniques, specific nucleotide sequences could now be used as targets for molecular identification of *Staphylococcus* species. For example, Poyart et al. (2001) successfully developed a pair of degenerate primers that amplified an internal fragment of the staphylococcal *sodA* gene, which could then be sequenced to discriminate most of the *Staphylococci* [19]. Sequencing of the *hsp60* and *rpoB* genes have also been reported to be useful for taxonomic and phylogenetic studies of *Staphylococcus* [20,21]. Nevertheless, these methods are time consuming and costly, as sequencing of the amplified products is required for species identification.

In order to simplify the process of species identification in *Staphylococci*, primers have been developed for species-specific detection of *S. aureus* [17,18,22], *S. epidermidis* [10,17], *S. saprophyticus* [23] and *S. xylosus* [16,17,24,25]. Some studies employed a multiplex PCR protocol that associates several primer pairs specific for various targets in the same amplification reaction. Martineau et al. (1998) developed a multiplex PCR assay which identifies *S. aureus* and *S. epidermidis* [18]; while Mason et al. (2001)’s protocol [22] could discriminate staphylococci from other genuses, distinguish *S. aureus* from CoNS and also identify oxacillin resistant staphylococci. In a separate research, Vannuffel et al. (1999) proposed a multiplex PCR-reverse hybridization approach targeting the *femA* gene in order to identify clinical staphyloccocal species [26]. The researchers characterized a *femA* homologous gene in *S. epidermidis* and assessed the presence of *femA* homologous genes in *S. hominis* and *S. saprophyticus* by alignment of *S. epidermidis* *femA* sequences. For our study, we modified the multiplex PCR protocol from Morot-Bizot et al. [7] to identify and differentiate *S. epidermidis*, *S. saprophyticus* and *S. xylosus* in our collection of CoNS isolates. The protocol proved to be effective and time saving for CoNS identification.

In addition to species identification, antimicrobial susceptibility testing using various antibiotics prescribed in our medical centre was also performed for all CoNS. No isolate was found to be resistant to vancomycin; nevertheless, about 60% of the CoNS were resistant to commonly prescribed antibiotics such as erythromycin and oxacillin/methicillin. In addition, almost all of the strains (98.7%) were resistant to penicillin (Figure 2). CoNS have been documented to be inherently resistant to penicillins and cephalosporins [13,16], and there have been concerns that heavy, prolonged usage of these antibiotics in certain hospitals may select for multidrug-resistant commensal organisms such as methicillin resistant *Staphylococcus epidermidis* (MRSE). Therefore, proper antibiotic stewardship would be of crucial importance in medical centres recording a high percentage of multidrug-resistant CoNS.

![Antibiotic susceptibility testing of CoNS isolates used in the study](image-url)
CONCLUSION

*S. epidermidis* was the most prevalent CoNS species identified in UKMMC in 2009; 57.7% of these isolates were methicillin resistant. As vancomycin is the standard treatment given for methicillin resistant *S. epidermidis* (MRSE), a high prevalence of MRSE might increase the selection pressure for vancomycin resistant *Staphylococcus* species and lead to limited treatment options in the future. Compared to conventional phenotypic tests, the multiplex PCR employed in this study is more accurate and rapid to perform, allowing CoNS species identification in a timely and reliable manner.

ACKNOWLEDGEMENT

This research is supported by the UKM Research University Grant UKM-GUP-TKP-08-19-067.

REFERENCES