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Numerical Solution of First Order Stiff Ordinary Differential 
Equations using Fifth Order Block Backward Differentiation Formulas

(Penyelesaian Berangka bagi Persamaan Pembezaan Biasa Kaku Peringkat 
Satu Menggunakan Blok Formula Beza ke Belakang Peringkat Lima)
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ABSTRACT

This paper describes the development of a two-point implicit code in the form of fifth order Block Backward Differentiation 
Formulas (BBDF(5)) for solving first order stiff Ordinary Differential Equations (ODEs). This method computes the 
approximate solutions at two points simultaneously within an equidistant block. Numerical results are presented to 
compare the efficiency of the developed BBDF(5) to the classical one-point Backward Differentiation Formulas (BDF). The 
results indicated that the BBDF(5) outperformed the BDF in terms of total number of steps, accuracy and computational 
time.
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ABSTRAK

Kertas ini membincangkan pembentukan kod tersirat dua titik dalam bentuk Blok Formula Beza Ke Belakang peringkat 
lima (BBDF(5)) bagi menyelesaikan Persamaan Pembezaan Biasa (PPB) kaku peringkat pertama. Kaedah ini mengira 
penyelesaian penghampiran dua titik serentak dalam jarak blok yang sama. Keputusan berangka diberi untuk 
membandingkan kaedah BBDF(5) dengan kaedah Formula Beza Ke Belakang klasik (BDF). Keputusan kajian menunjukkan 
bahawa BBDF(5) mengatasi BDF dalam hal jumlah langkah, kesalahan maksima dan masa pengkomputeraan.

Kata kunci:  Kaedah blok; persamaan pembezaan biasa

INTRODUCTION

In this paper we are interested in the numerical solution of 
Initial Value Problems (IVPs) for first order stiff Ordinary 
Differential Equations (ODEs) of the form

y’i= fi(x,y),        y(a) = α,        i= 1,2,…,s,	 (1)

where

y (x) = (y1,y2, …, ys)
T and α = (α1,α2, …αs)

T in the interval 
[a,b].

	 Previous works on block methods for solving (1) 
are  given by Rosser (1967), Chu and Hamilton (1987) 
and Fatunla (1990), to name a few. The block method 
produced numerical solutions with less computational 
effort as compared to nonblock method (see Majid 
(2004)). This is because the block method calculated 
more than one solution simultaneously. The block 
method consists of a number of points in each block, 
depending on the structure of that block. Voss and Abbas 

(1997) proposed one-step fourth-order block method 
and it was shown that the method can be paralleled as 
further research to enhance the efficiency. The definition 
of block method which have been defined by Voss and 
Abbas (1997), which is if k ≥ 1 is the block size, a block 
of solutions can be represented by the vector Yi= (yn+1, 
yn+2, …, yn+k)

T with yn+j(1 ≤ j ≤ k), the generated solution 
at xn+j=jh, where xn is the right-hand end point of the 
preceding block and h is the step size.
	 Ibrahim et al. (2007) derived a new block method 
which is called the Block Backward Differentiation 
Formula (BBDF) to solve stiff ODEs. The BBDF is computed 
two points simultaneously in each block using xn-1 and xn 
as the backvalues. As a result, the proposed method have 
improved the accuracy and required less computational 
time. 
	 The focus in this paper is to extend the method 
derived by Ibrahim et al. (2007) to further improve the 
performance of the BBDF. In the next section, we will 
show the formulation of the fifth order Block Backward 
Differentiation Formulas which is denoted by BBDF(5) 
with fixed stepsize.
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Formulation of fifth order 
BBDF method (BBDF(5))

We consider the points xn-3, xn-2, xn-1 and xn as the 
backvalues for calculating the values yn+1 and yn+2 
simultaneously. The Lagrange polynomial Pkwhich has 
been used to interpolate the backvalues, is defined as:

	 (2)

where  

 

In this method, the computation of approximation for yn+1 
and yn+2  concurrently is by using one earlier block where 
there are two points in each block. We start by replacing x 
= xn+1 +sh into (2) to formulate yn+1, then we have:

		  (3)

Subsequently, by differentiating (3) once with respect to 
s at the point x = xn+1. On substituting s = 0, and equating 
hfn+1 = hP’(xn+1), will produce the following formula for 
yn+1:

(4)

Similarly, applying the same steps as above and evaluating 
s =1 to formulate yn+2, hence will produce:

	 (5)

Therefore, the corrector is formulated as follows:

1)	

and							     
	 (6)
2)
		

The formulas (6) are fully implicit, so we need to derive 
the predictor to compute the starting values which are 

yn-3, yn-2, yn-1 and yn. The future values for yn+2 and fn+1 are 
also obtained from the predictors. The predictor formula 
is constructed in the usual manner by interpolating the 
points xn-4 xn-3, xn-2, xn-1 and xn. Next, we determined the 
order of the method given in (6).

ORDER OF THE METHOD

In this section, we will determine the order of the proposed 
method given in (6). We illustrate the definitions of the 
order for Linear Multistep Method (LMM) as given in 
Lambert (1991) using the following definitions:

Definition 1
The Linear Multistep Method (LMM) given by:

	 	 (7)

where αj and βj are constants subject to the conditions 
αk = 1, | α0 | + | β0 | ≠ 0.

Definition 2
The LMM (7) and the associated difference operator L 
defined by

	 (8 )

are said to be of order p if C0 = C1 = … = Cp = 0, Cp+1 ≠ 0. 
The general form for the constant Cq is defined as:
	
 

(9 )

The formulas in (6) can be written in general matrix form 
as follows:

	 (10)

where Aj and Bj are r by r matrices with elements al,m and  
bl,m for l, m = 1, 2, …, r. Since BBDF(5) is a block method, 
we extend the definition 2  in the form:
		

and the general form for the constant Cq is defined as:

		

		  (11 )

In order to apply the definitions, we need to rearrange 
the formulas given in (6) into the form given by equation 
(10). Then we implemented (11) into (6) in order to find 
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the order of the formulas, hence we obtain C6 ≠ 0 . Thus, 
we can conclude that our method is fifth order.

Numercial results

We will compare the BBDF(5) with classical one-point 
Backward Differentiation Formula  (BDF) which is given 
as:

	(10)
 

The following problems are solved numerically using the 
BBDF(5) and the BDF.

Problem 1

y’ = –100 (y – x3) + 3x2,	 x  [0, 10],

where the initial condition,  y(0) = 0, the eigenvalue is 
λ = -100 and y = x3 is the exact solution (Brannan et al. 
2007).

Source : Brannan and William (2007).

Problem 2 

y’1 = -2y1 + y2 + 2 sin x,

y’2 = 998y1 - 999y2 + 999 (cos x – sin x),	 x  [0, 10],

where the initial condition, y1(0) = 2, y2 (0) = 3, the 
eigenvalues are λ1 = -1, λ2 = -1000 and y1 = 2e-x + sin x, y2 
= 2e-x + cos x  is the analytic solution 

Source : Lambert (1991).

Problem 3 

y’1 = 198y1 + 199y2

y’2 = -398y1 – 399y2	 x  [0, 5],

where the initial condition, y1(0) = 1, y2(0) = –1, the 
eigenvalues are λ1 = –1, λ2 = –200  and y1(x) = e-x, y2(x) = 
-e-x is the analytic solution.

Source : Ibrahim et al. (2007).

Notations used in the following tables are:
BDF	 :	 classical one-point Backward Differentiation 
Formula 
BBDF(5)	 :	 fifth order Block Backward Differentiation 
Formulas 
H	 :	 step size
TS	 :	 the total number of steps
TIME	 :	 the time execution (μs)
MAXE	 :	maximum error
AVE	 :	 average error
The calculation of error is given as:

ERRORj = | yj(exact solution) – yj(approximate)|.

For maximum error, we compute using the formula which 
is defined as follows:

and the average error is defined as:

where b is the end value of x and a is the 

initial value of x. The numerical results are tabulated in 
Table 1.

Table 1: Numerical results for problem 1 and 2

Problem H Method TS MAXE TIME AVE

1. 10-4

10-6

10-8

BDF
BBDF(5)
BDF
BBDF(5)
BDF
BBDF(5)

100,000
50,000
10,000,000
500,000
100,000,000
50,000,000

5.99403e-005
1.19880e-004
5.96096e-007
1.19872e-006
1.55652e-007
5.48359e-008

431940
24447
43164000
2457650
4302530000
247317000

1.99801e-005
1.99800e-005
1.98650e-007
1.99809e-007
4.41561e-008
8.54131e-009

2. 10-4

10-6

10-8

BDF
BBDF(5)
BDF
BBDF(5)
BDF
BBDF(5)

100,000
50,000
10,000,000
500,000
100,000,000
50,000,000

8.38318e-004
1.02772e-004
8.38225e-005
1.02861e-006
8.38318e-007
6.77840e-009

599612
50008
59762100
5772230
5929610000
589993000

1.48119e-005
1.33710e-005
1.48078e-006
1.33778e-007
1.48119e-008
5.10639e-010

3. 10-4

10-6

10-8

BDF
BBDF(5)
BDF
BBDF(5)
BDF
BBDF(5)

100,000
50,000
10,000,000
500,000
100,000,000
50,000,000

7.33443e-005
7.32892e-005
7.35743e-007
2.51124e-008
7.33881e-008
2.88631e-010

103300 
22110
49983000 
2203750  
4287873000 
190338000 

1.12283e-006
1.22720e-006
1.68444e-008
4.11149e-009
1.67792e-009
3.15423e-012
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CONCLUSION

Our results showed that BBDF(5) outperformed the BDF 
in terms of execution time, total number of steps and 
accuracy. Furthermore, BBDF(5) was more efficient at 
smaller stepsize as shown by the average error. Hence, 
the BBDF(5) is more efficient than BDF. Future research is 
in progress on extending the method using variable-step 
size.
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