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Solving Directly General Third Order Ordinary Differential Equations 
Using Two-Point Four Step Block Method

(Penyelesaian Terus Persamaan Pembezaan Biasa Am Peringkat Tiga Menggunakan 
Kaedah Blok Dua-Titik Empat Langkah)
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ABSTRACT

Two-point four step direct implicit block method is presented by applying the simple form of Adams- Moulton method 
for solving directly the general third order ordinary differential equations (ODEs) using variable step size. This method 
is implemented to get the solutions of initial value problems (IVPs) at two points simultaneously in a block using four 
backward steps. The numerical results showed that the performance of the developed method is better in terms of 
maximum error at all tested tolerances and lesser total number of steps as the tolerances getting smaller compared to 
the existence direct method.
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ABSTRAK

Kaedah blok tersirat secara terus bagi dua-titik empat langkah yang berasaskan aplikasi kaedah Adams-Moulton yang 
ringkas untuk menyelesaikan secara terus sistem persamaan pembezaan biasa (PPB) am peringkat ketiga menggunakan 
saiz langkah yang berubah. Kaedah ini dilaksanakan bagi mendapatkan penyelesaian masalah nilai awal (MNA) pada dua 
titik secara serentak di dalam blok dengan menggunakan empat langkah sebelumnya. Hasil berangka menunjukkan bahawa 
kaedah blok yang dibangunkan adalah lebih baik daripada segi ralat maksimum pada semua toleran yang di uji dan kurang 
jumlah bilangan langkah apabila toleran semakin kecil jika dibandingkan dengan kaedah secara terus sedia ada.

Kata kunci: Kaedah blok; dua-titik; persamaan pembezaan biasa peringkat  tinggi

INTRODUCTION

In this paper, we considered solving initial value problems 
(IVPs) for third order  ordinary differential equations (ODEs) 
in the form: 

	 y'''	=	f(x,	y,y’,y”),	y(a)	=	α,	y’(a)	=β,	 
 y" (a)=	γ,	x	∈ [a,b] (1)
        
Equation (1) has been practically used in a wide variety of 
applications especially in science and engineering field and 
some other area of applications. The reduction of (1) to the 
system of first-order equations will leads to computation 
cost. The purpose of the present paper was to develop an 
alternative approach for the direct solution of (1) based on 
the direct variable step two-point four step (D2P4VS). 
 Several researchers such as Suleiman (1979), Lambert 
(1993), Omar (1999), Awoyemi (2003), Awoyemi and 
Idowu (2005), Majid and Suleiman (2006), Yap et al. 
(2008), Jator and Li (2009), Olabode and Yusuph (2009), 
and Majid et al. (2009, 2010) have investigated and 
suggested the best approach for solving the system of 
higher order ODEs directly. Majid and Suleiman (2006) 

proposed a one-point direct method for solving second 
order ODEs directly. The authors have shown that the 
computation of divided difference and integration 
coefficients in the code for the multistep method are very 
expensive. Yap et al. (2008) has introduced the two-point 
and three-point block method based on Newton-Gregory 
backward interpolation formula for solving special second 
order ODEs using constant step size while Majid et al. 
(2009) has developed a two-point block method in the form 
of Adams Moulton type for solving general second order 
ODEs directly using variable step size. Olabode and Yusuph 
(2009) has introduced a direct 6-steps block method for 
solving special third order ODEs using constant step size.  
A P-stable multistep method based on the collocation of 
the differential system from a basis function has been 
introduced by Awoyemi (2003) for solving general third 
order IVPs of ODEs directly using constant step size.
 The essential aim of this paper was to propose a two-
point four step direct implicit block method of order 7 for 
solving (1) using variable step size strategy. The propose 
block method in this paper will store all the coefficients of 
the method, therefore it manage to avoid the computation 
of the integration coefficients. 
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FORMULATION OF THE METHOD 

The interval [a, b] is divided into a series of blocks that 
involved the interpolation points from (xn–4, fn–4),…, 
(xn+2, fn+2) as shown in Figure 1. The solutions of yn+1 and 
yn+2  will be computed at several distinct points on the x-axis 
simultaneously in a block. In Figure 1, the computed block 
has the step size 2h while the previous block has the step 
size 2rh and 2qh.         
 The general form of the k point formulation method 
can be written as follows:

 (2)
where 

FIGURE 1 2-point 4 steps block method

                …

 (3)
       
and   

is the Lagrange polynomial of degree s.

The first point, yn+1, can be obtained by taking k = 1and s = 
6 in (2) and (3), hence the formulae of yn+1 in terms of r and 
q can be obtained by integrating (3) using MATHEMATICA 
which produces the following formulae:

(4)

Integrating once:
             

p = 1,2,3,

PEMBETULAN MANUSKRIP 

 

1. Mukasurat 625, pembetulan pada tajuk manuskrip, sila tukarkan ‘t’ ke ‘T’. 
 
(Penyelesaian Terus Persamaan Pembezaan Biasa Am Peringkat Tiga Menggunakan  
Kaedah Blok Dua-Titik Empat Langkah) 
 
 

2. Mukasurat 625, pada Keyword dan Kata Kunci: 
 
Keywords: Block method, two point, higher order ordinary differential equations  

Sila betulkan ‘M’ ke ‘m’ dan ‘P’ ke ‘p’. 

Kata kunci: Kaedah blok, dua-titik, persamaan pembezaan biasa peringkat  tinggi 

Sila tukarkan kedudukan “dua-titik” dengan “Kaedah blok” seperti di atas. 

3.  Mukasurat 625, pada bahagian INTRODUCTION, Equation 1: 
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4. Mukasurat 626, FIGURE 1, Dalam Figure 1 semua kedudukan ‘qh’,’rh’,’h’dan point ‘x’ tidak 
berada dalam kedudukan yang betul. Sila betulkan seperti rajah di bawah: 
 

 

 

 

 

 

5. Mukasurat 626, pada bahagian FORMULATION OF THE METHOD,pada baris ke 2 dari tajuk: 

!"#$%#$&! my "#! y !!!
$%!&'&(&)!*!+,'#,!-!./"&%!*!"/&0&!1!

2/,/%"&%!"#'/'/""&%! )(ay "#!.&,$0!.&,/!0#3#,4$!'$!&4&05!

 
    2qh       2rh   2h 
                                             

     qh            qh             rh           rh             h             h  

                       4nx        3nx        2nx           1nx           nx          1nx         2nx           
         
          Figure 1: 2-point 4 steps block method 
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Integrating twice:

(5)

(6)

The same process as obtaining the corrector for the 
first point is applied to derive the corrector formulae 
at the second point. The second point, yn+2, can be 
obtained by taking k = 2 and s = 6 in (2) and (3).  

The formulae of yn+2 in terms of r and q can be obtained 
by integrating (3) using MATHEMATICA which produces 
the following formulae:

Integrating three times:
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Integrate once:

(9)

(7)

Integrate thrice:

(8)

Integrate twice:

y' (xn+2) –y' (xn) – 2hy'' (xn) = h2

+–

.

+
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(11)

The two-point four step implicit block method is the 
combination of predictor of order 6 and the corrector of 
order 7. The formulae for predictor can be derived in a 
similar way as the corrector, but the interpolation points 
involved are (xn–5,  fn–5),…,(xn,  fn). 

IMPLEMENTATION OF THE METHOD

During the implementation of the method, the choices of 
the next step size is restricted to half, double or constant. 

The successful step size remains constant for at least 
two blocks before allowing it to be doubled. In case of 
successful step size, if the step size remain the same then 
the ratios are (r=1, q=1), (r=1, q=2) or (r=1, q=0.5). When 
the step size is doubled, the ratios is (r=0.5, q=0.5). In case 
of step size failure, the choices of ratios is (r=2, q=2). For 
instance, taking (r=1.0, q=1.0) in (4), (5), (6), (7), (8) and 
(9), we obtained the corrector formulae of the first point 
and second point as follows:

Second point:

In the code, the values of 1ny +  and 2ny +  were approximated 
using the predictor-corrector schemes. If t corrections are 
needed, then the sequence of computations at any mesh 
point is (PE)(CE)t  where P and C indicate the application 
of the predictor and corrector formulae respectively and E 
indicate the evaluation of the function f. A simple iteration 
has been implemented to approximate the values of 1ny +  
and 2ny + . In the code, we iterate the corrector to convergent 
and the convergence test employed was:
 

      
                             
where t is the number of iterations. After the successful 
convergence test, local errors estimate Est at the point 

2nx + are performed to control the error for the block. We 
obtained the Est by comparing the absolute difference 
of the corrector formula derived of order k and a similar 
corrector formula of order (k-1). The error controls for the 
developed methods are at the second point in the block 
because generally it had given us better results.

The errors calculated in the code are defined as:

where ( )ty  is the t-th component of the approximate 
y. A=1, B=0 correspond to the absolute error test. A=1, 
B=1 correspond to the mixed test and finally A=0, B=1 
correspond to the relative error test. The mixed error test 
is used for Problem 1, 2, 3 and 4. The maximum error is 
defined as follows:

 

where N is the number of equations in the system and 
SSTEP is the number of successful steps. At each step of 
integration, a test for checking the end of the interval is 
made. If b denotes the end of the interval then: 
                                            

(10)

First point:
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otherwise h remain as calculated.  The technique above 
helped to reach the end point of the interval. The code 
was written in C language and executed on UNIX operating 
system. 

STABILITY ANALYSIS

In this section, we will discuss the stability of the proposed 
method derived in the previous section on a linear third 
order problem,     

  (12)
Applying equation (12) into the corrector formula of 

1+ny  and 2+ny  in (10) and (11). Then, the formulae are 
written into matrix form and setting the determinant of the 
matrix to zero. Hence, the stability polynomial is obtained, 

RESULTS AND DISCUSSION

In order to study the efficiency of the developed code, we 
presented four numerical experiments for the following 
test problems. All the four tested problems are in Awoyemi 
(2003). Problem 3 and 4 also can be found in Awoyemi  
and Idowu (2005). 

Problem 1: 

The exact solution: y(x)=(3/16)(1-cos2x)+(1/8)x2.

FIGURE 2 Stability region for D2P4VS when r = q = 1.

where H1= hφ,	H2 = h2λ and H3 = h3 β. Figure 2 show the 
stability region of the D2P4VS method when r = q = 1.
The stability region is plotted using MATHEMATICA and the 
shaded region in Figure 2 demonstrate the stability region 
for the proposed method when r = q = 1.

Problem 2: 

The exact solution: y(x) = 2(1-cos x) +sin x.

Problem 3: 

The exact solution: y(x)=-2e-3x + e-2x + x2 -1.
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FCN           Total function calls    
D2P4VS      Implementation of the direct two-point four 

step implicit block method derived earlier 
using variable step size

Awoyemi(1) Numerical results in Awoyemi (2003)
Awoyemi(2) Numerical results in Awoyemi and Idowu 

(2005)

The codes are written in C language and executed on 
DYNIX/ptx operating system. The total number of steps 
and maximum error between D2P4VS, Awoyemi(1) and 
Awoyemi(2) are presented in Figures 3 to 6 and in Table 
1 to 4 for solving problem 1 to 4.

FIGURE 3. Results of total steps and maximum error for Problem 1

FIGURE 4. Results of total steps and maximum error for Problem 2

FIGURE 5. Results of total steps and maximum error for Problem 3

Problem 4: 

The exact solution: y(x) = x2 e-2x– x2+3.

The notations used in the Table 1 – 5 are as follows:
TOL Tolerance
MTD            Method employed
b End of interval
TS                Total steps taken
MAXE         Magnitude of the maximum error of the 

computed solution    
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In Figure 3 – 6, it is obvious that method D2P4VS 
requires less number of total steps as compared to method 
Awoyemi(1) and Awoyemi(2) when solving the same given 

FIGURE 6: Results of total steps and maximum error for Problem 4

Awoyemi(1) D2P4VS  

Step size b TS MAXE b TOL TS MAXE FCN

0.025 5.0 200 3.94(-6) 5.0
10–6 46 4.66(-7) 242

10–8 56 9.14(-8) 306

10–10 88 1.53(-10) 468

10.0 400 3.80(-6) 10.0
10–6 61 4.66(-7) 328

10–8 91 2.43(-8) 436

10–10 136 1.53(-10) 722

15.0 600 2.29(-6) 15.0
10–6 76 4.66(-7) 406

10–8 110 2.63(-8) 550

10–10 180 1.54(-10) 918

20.0 800 1.30(-6) 20.0
10–6 91 4.66(-7) 478

10–8 129 2.63(-8) 666

10–10 204 1.28(-9) 1062

TABLE 1: Comparison results for solving Problem 1

TABLE 2: Comparison results for solving Problem 2

Awoyemi(1) D2P4VS  
Step size b TS MAXE b TOL TS MAXE FCN

0.025

5.0 200 3.53(-6) 5.0

10–6 43 1.86(-7) 214

10–8 56 2.30(-9) 284

10–10 75 1.39(-9) 364

10.0 400 2.25(-6) 10.0

10–6 50 2.65(-6) 260

10–8 75 1.29(-8) 390

10–10 99 3.01(-9) 508

15.0 600 9.85(-6) 15.0

10–6 58 1.11(-5) 316

10–8 94 2.82(-8) 502

10–10 123 6.96(-9) 652

20.0 800 6.31(-6) 20.0

10–6 66 2.64(-5) 372

10–8 113 4.38(-8) 608

10–10 146 1.08(-8) 792
 

problems. It is also observed that the maximum error of 
D2P4VS at tolerance 10–10 are smaller than Awoyemi(1) 
and Awoyemi(2) at all different values of b. 
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Awoyemi(1) D2P4VS  
Step size b TS MAXE b TOL TS MAXE FCN

0.025

5.0 200 3.53(-6) 5.0

10–6 43 1.86(-7) 214

10–8 56 2.30(-9) 284

10–10 75 1.39(-9) 364

10.0 400 2.25(-6) 10.0

10–6 50 2.65(-6) 260

10–8 75 1.29(-8) 390

10–10 99 3.01(-9) 508

15.0 600 9.85(-6) 15.0

10–6 58 1.11(-5) 316

10–8 94 2.82(-8) 502

10–10 123 6.96(-9) 652

20.0 800 6.31(-6) 20.0

10–6 66 2.64(-5) 372

10–8 113 4.38(-8) 608

10–10 146 1.08(-8) 792
 

Awoyemi(1) D2P4VS  

Step size b TS MAXE b TOL TS MAXE FCN

0.0125 1.0 80 7.60(-6) 1.0 10–6 41 9.33(-7) 210

10–8 54 7.82(-8) 256

0.00625 160 9.54(-7) 10–10 64 8.16(-10) 330

Awoyemi(2) D2P4VS  

Step size b TS MAXE TOL TS MAXE FCN

0.01 4.0 400 1.16(-3) 4.0 10–6 59 2.26(-6) 318

10–8 99 7.82(-8) 436

0.005 800 1.46(-4) 10–10 120 1.07(-9) 666

TABLE 3. Comparison results for solving Problem 3

TABLE 4. Comparison results for solving Problem 4

Awoyemi(1) D2P4VS  
Step size b TS MAXE b TOL TS MAXE FCN

0.0125 1.0 80 4.90(-5) 1.0 10–6 38 4.36(-5) 194
10–8 48 2.32(-6) 234

0.00625 160 6.20(-6) 10–10 60 1.48(-7) 296
Awoyemi(2) D2P4VS  

Step size b TS MAXE TOL TS MAXE FCN

0.01 4.0 400 1.18(-1) 4.0 10–6 49 5.11(-3) 260
10–8 65 5.08(-4) 346

0.005 800 1.48(-2) 10–10 89 2.18(-4) 450

Tables 1 and 2 show that D2P4VS managed to obtain 
better accuracy and less total number of steps compared to 
Awoyemi(1) when b = 5.0, 10.0, 15.0 and 20.0. Concerning 
Table 1, when b = 5.0, in Awoyemi (1) the maximum 
error was 3.94(-6) with 200 steps and when b = 20.0 the 
maximum error was 1.30(-6) using 800 steps. While the 
D2P4VS could obtain the maximum error of 1.53(-10) 
(when b = 5.0) and 1.28(-9) (when b = 20.0) with 88 and 
204 steps respectively at TOL = 10–10. The same pattern 
can be observed in Table 2. 
 In Table 3, when b = 1.0, in Awoyemi(1) the best 
results was achieved with 160 steps and the maximum 
error was 9.54(-7) and  when b = 4.0, in Awoyemi(2) the 
optimum accuracy was 1.46 (-4) using 800 steps. While 
D2P4VS could obtain the maximum error of 8.16(-10) 
(when b = 1.0) and 1.07(-9) (when b = 4.0) using 64 and 
120 steps, respectively. Table 3 also shows the advantage 
of D2P4VS over Awoyemi(1) and Awoyemi(2). Hence, the 
method proposed is clearly superior since it involves less 
computational cost and obtained highly accurate results.

CONCLUSION

In this paper, we have shown the efficiency of the 
developed two-point four step block method presented in 
the simple form of Adams-Moulton method using variable 
step size was suitable for solving general third-order 
ODEs. The method has shown the superiority in terms 
of total steps, function calls and maximum error over the 
existence method in Awoyemi (2003) and Awoyemi and 
Idowu (2005).
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