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Simulations of Hirschsprung’s Disease Using Fractional Differential Equations
(Simulasi Penyakit Hirschsprung Menggunakan Persamaan Pembezaan Pecahan) 

F.A. Abdullah*

Abstract

In this paper, we examined a model of cell invasion focusing on the wavefront of the neural crest (NC) cells in the case 
of Hirschsprung’s disease (HSCR). Hirschsprung’s disease (HSCR) is a congenital defect of intestinal ganglion cells and 
causes patients to have disorders in peristalsis. This simulation model was performed using the fractional differential 
equations (FDEs) based upon two basic cell functions. Here, we simulated the mathematical model in a one-dimensional 
setting, based on the fractional trapezoidal numerical scheme and the results showed an interesting outcome for the 
mobility of the cellular processes under crowded environments.
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Abstrak

Dalam penyelidikan ini, kami mengkaji model berkaitan penyerangan sel dan fokus kajian adalah pada gelombang 
penyerangan sel neural dalam penyakit Hirschsprung (HSCR). Penyakit Hirschsprung (HSCR) adalah penyakit yang 
berkaitan dengan kecacatan semasa lahir atau sebelum lahir dan berpunca daripada sel ganglion sehingga menyebabkan 
proses periltalsis menjadi tidak normal. Model simulasi adalah berdasarkan persamaan pembezaan pecahan (FDES) 
ke atas dua sel asas. Kajian ini mensimulasikan model matematik dalam satu dimensi berpandukan kepada kaedah 
berangka trapezoid pecahan. Hasil keputusan daripada simulasi ini menunjukkan wujud hasil yang menarik daripada 
pergerakan sel dalam keadaan bersesak. 

Kata kunci: Penyakit Hirschsprung; persamaan pembezaan pecahan; simulasi

Introduction

Hirschsprung’s disease or HSCR is the name given to 
intestinal motility disorder (Ferreti et al. 2006; Skaba 
2007). The main cause of the disease was discovered 
by Swenson (Ferreti et al. 2006), although HSCR was 
first described more than 50 years earlier by Harald 
Hirschsprung (Ferreti et al. 2006; Passarge 2002; Skaba 
2007). Since then, the surgical treatments recommended 
for HSCR has been described, giving hope to its sufferers. 
In order to understand the underlying nature of HSCR, it 
is necessary to understand the enteric nervous system 
(ENS), which is part of the human peripheral nervous 
system that controls the gastrointestinal (GI) tract (Ferreti 
et al. 2006).
	T he ENS is present in all vertebrates and is important 
for regulating normal digestive activity of the digestion 
system. The ENS is established by rostral-to-caudal 
migration of neural crest (NC) cells along the GI tract 
(Yntema & Hammond 1954). During normal development, 
NC cells migrate from the oral (rostral) end of the 
developing vertebrate gut to the anal (caudal) end, in order 
to colonize the developing gut. However, under certain 
circumstances, NC cells fail to reach the caudal part of the 
gut, resulting in a lack of enteric ganglia in the caudal part 
of the gut. The gross reduction in intrinsic nerve cells also 
causes defects in the digestive system. 

	 Details relating to cell migration along the developing 
gut are important as they provide understanding of ENS 
dysmorphologies, such as Hirschsprung’s disease and 
cleft palate. Recently, there has been increased interest 
in studying the dynamic behaviour of these cells as they 
migrate through the gut. Landman et al. (2005) described 
cell migration based upon diffusion and chemotaxis 
mechanisms. Their model showed the existence of a 
travelling wave solution, regardless of whether the 
migration is purely diffusion, chemotaxis or a combination 
of both processes and showed that diffusion masks the 
influence of chemotaxis more effciently than chemotaxis 
masks diffusion. Simpson et al. (2006) later developed a 
population-scale mathematical model by including various 
cell mechanisms, as well as proliferation by logistic 
growth. Landman et al. (2007) combined and updated 
the work described by Simpson et al. (2006, 2007), 
stating that the relative contributions of cell motility, cell 
proliferation and gut growth determine NC cell invasion of 
the intestine in the growing gut. Their model also supports 
the hypothesis that an imbalance between gut growth and 
NC cell migration may also give rise to HSCR disease. 
	O n observation, it seems that the majority of papers 
describing cell invasion or migration processes are based 
upon partial differential equations (PDE). Although these 
models agree with the experimental hypothesis, there is 
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a need to consider other approaches, so as to understand 
cell migration in the presence of molecular crowding. 
Previous research has discovered the effects of diffusion 
when biological environments have high densities and 
viscosities due to macromolecular crowding (Yuste & 
Lindenberg 2001, 2002; Yuste et al. 2004). Even though 
many numerical methods related to PDEs have been 
developed, their application to biological modelling has 
not, as yet, been given much attention. This motivated 
the application of the fractional differential equation 
(FDE) approach to modelling of Hirschsprung’s disease 
(Landman et al. 2005, 2007; Simpson et al. 2006), since 
cell proliferation can block cell migration.
	T he structure of the paper is as follows. In the next 
section, we introduce the notion of fractional differentiation 
and later applied this differentiation to a physical problem. 
Finally, the results of this simulation are presented in the 
last section.

Numerical Method

Consider the fractional differential equation of the form:

	  =  (y(t) + g(y(t)), t ∈ [0, T],

	 y(0) = y0, y0 ∈ m,	 (1)

where 0 < α < 1. denotes the Riemann-Liouville 
fractional derivative (Oldham & Spanier 1974) of the 
function f, defined by:

	 	 (2)

Г(α) is the Gamma function defined by:

	 Г(α) = tα-1dt,

The Caputo fractional derivative is given by:

	 	 (3)

	 If f(t)  is continuous and f´(t) is integrable in the 
interval [0, T], then for every 0 < α < 1 the Riemann-
Liouville and the Caputo fractional derivatives satisfy the 
following relation (Oldham & Spanier 1974):

	 	    t > 0.		  (4)

	 A number of authors, for example Diethelm et al. 
(2002, 2004), Ford and Simpson (2001), considered the 
numerical solution of so-called Caputo FDEs that take the 
form:

	 	

but here the preferred form is (1), as it is more naturally 
allied to problems discussed in this paper (Abdullah 2009). 
This form also appears when solving problems in systems 
biology arising from anomalous diffusion and chemical 
kinetics of molecular species in a crowded environment 
(Yuste & Lindenberg 2001, 2002).
	T o solve problem (1), we use the implicit fractional 
trapezoidal method written as:

	 yn+1 = yn + 

	 (5)

where h refers to the time stepsize.
	 In order to implement this method, numerical 
approximations to the fractional derivative operator are 
required. Here, the approximation by Diethelm et al. 
(2005) is used when approximating the Caputo fractional 
derivative operator:

	 	 (6)

where h = T/n is the integration stepsize, tj = jh, j = 0,1,2,…, 
n, yn is an approximation to exact solution y(tn).

	 Cjn = 
	

	 (7)

Numerical Experiments

The system of partial differential model for donor and host 
population density was used by Simpson et al. (2006) in 
a non-growing gut system and later by Landman et al. 
(2007), who extend the system by including gut growth 
into the existing system.
	T he one-dimensional donor-host system, as a fractional 
equation, is given by:

	 	 (8)

where D and H are the densities of donor and host cell types 
in space and time. Here, x represents the invasion axis or 
the position along the gut, KD, KH are the diffusivities of 
the donor and host cell types and σD, σH represent mitotic 
indicesfor the donor and host cell types, respectively. C is 
the carrying capacity density of the tissue and ν represents 
the velocity field associated with growth of the gut.
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	 If we set ν = 0, then (8) is written as:

	

	
	 (9)

	T he functions f (D(x,t), H(x,t) and g(D(x,t), H(x,t) 
or f (D,H) and g(D,H) represent the effects of chemical 
reactions and are:

	 f (D,H) = D ,

	 g(D,H) = H .	

	 Values at the ‘ghost points’ are found using a 
discretized version of the boundary conditions �D/�x|x =0,L  
= 0, �H/�x|x = 0,L = 0.
	T o solve (9) numerically, the interval is divided into 
m equal parts. Computations were restricted to a finite 
interval, given as 0 ≤ x ≤ m. As t is not discretized, the grid 
comprises the x values at which the solution is to be found 
and is given as xi = i∆x; i = 0,1,2, …, m; ∆x = and

	 Dm+1(t) = Dm(t); D–1(t) = D0(t);

	 Hm+1(t) = Hm(t); H–1(t) = H0(t).		  (10)

We denote:

	 Di(t) � D(xi,t), Hi(t) � H(xi,t).	

	B y discretizing  and  from (9) using the method 
of lines, we get:

	 (Di+1(t) – 2Di(t) + Di-1(t)),	

	 (Hi+1(t) – 2Hi(t) + Hi-1(t)).	 (11)

Using (11), we now arrive at the system of FDEs for (8):

	 (12)

	 Hence, we find the fractional differential equation 
system, as:

	

where the discretisation matrix J is defined as:

	
	  	 (13)

and the vectors U and H are defined by:

	 	 (14)

	 In simulations, the donor and host cell populations are 
plotted at various time points t = 0s, 50s, 300s, 800s and 
the length of the axis L = 100 μm. Parameter L represents 
the invasion axis or gut length.
	 Here, the progress of these cells at different times 
is observed and the results are illustrated with different 
α parameters. These simulations are able to relate to the 
rostro-caudal (left to right) or caudo-rostal (right to left) 
progression wave during cell invasion of a growing gut. 
The initial conditions of these simulations are based on 
three conditions constructed to establish details of the rules 
of migration for the rostro-caudal wave of NC cells. From 
these results, several important questions about the nature 
of the behaviour of the NC cell invasion wave in crowded 
environments can be answered.

The first initial conditions:

	

	

The second initial conditions:
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The third initial conditions:

	

	

	 Parameters used for the simulations are σD = 2.25, 
σH = σD and KD = 0.25, KH = KD. Numerical results based 
on these three initial conditions are shown in Figures 1, 
2 and 3.
	 Figure 1 shows the donor cells were placed into 
the host cell region or behind the host cell wavefront. 
Initially, donor cell density is 1.8 and that of host cells is 
1.4. Note that the gut carrying capacity density is 1. First, 
the behaviour at α = 1, is investigated and it can be seen 
that cells at the donor-host interface are above the limit 
of gut carrying capacity. At t = 50 s, these donor cells 
do not proliferate but spread to either side of the donor-
host interface. Meanwhile, host cells at the donor-host 
interface are also unable to proliferate. Some donor and 
host cells migrate into the uninvaded regions on either 
side of the donor-host interface.The host cells that move 
to either side of the donor-host interface will proliferate 
to reach the carrying capacity. Meanwhile, some donor 
cells that are moving on either side of the donor-host 
interface die.
	 In constrained environments, we see that both types 
of cells show slower movements. At t = 50 s, some of 

the host cells that are moving to the uninvaded region 
on either side of donor-host interface are slower to 
proliferate and do not reach the carrying, capacity density. 
After t ≥ 300 s we can see that host cells at either side 
of the donor-host interface are able to reach the carrying 
capacity density. The effect of crowdedness accentuates 
these effects. Figure 2 shows the effect of locating donor 
cells in a region of unoccupied tissue. In this case, cells 
from the donor tissue migrate in both rostral and caudal 
directions. At t = 50 s, we see that once the rostrally-
moving donor wave and caudally-moving host wave 
meet each other, the waves coalesce. After coalescence, 
cells at the donor-host interface cease proliferation, 
since the total cell density already reaches the density 
capacity. In crowded environments the time for each cell 
to coalesce also slows down. In Figure 3, the donor cells 
were located ahead of the host cells’ leading edge. The 
behavior of these cells is similar to the results in Figure 
2. Describing the system during normal diffusion, it can 
be seen that donor cells form an invasion wave moving 
in both directions. As donor cells migrate caudally, host 
cells also migrate rostrally. These cells will invade until 
they coalesce. After coalescence, cells at the donor-host 
interface will cease proliferation in order to control the 
gut carrying capacity. At t = 800 s, we see that both cells 
are mingling by diffusion, resulting in a much slower rate 
of advance. As the level of crowdedness in the system is 
increased, both cell types also require longer time frames 
before they can invade each other.

Figure 1. Simulation of donor (dotted) and host (solid) cell types with various 
α parameters at t = 0s, 50s, 300s and t = 800s based on the initial condition



	 	 665

Figure 2. Mathematical simulation of donor (dotted) and host (solid) cell types with different α parameters 
at t = 0 s, 50 s, 300 s and t = 800 s  based on the second initialcondition

Figure 3. Mathematical simulation of donor (dotted) and host (solid) cell typeswith different 
α parameters at t = 0 s, 50 s, 300 s and t = 800 s on the third initialcondition
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Conclusion

From these numerical results, based on Figures 2 and 3, it 
can be concluded that, if host NC-derived cells and donor 
NC-derived cells migrate in opposite directions, these cell 
vanguards might impede each other (Simpson et al. 2007). 
Another important result derived from these experiments 
is that, at the donor-host interface, neither donor nor host 
NC cells proliferate, once maximum capacity is reached. 
All results confirmed that anomalous diffusion caused the 
proliferation of NC cells to slow down and sometimes these 
processes halt. Therefore, the growing gut is not able to 
fully colonize within a specific time frame, resulting in a 
Hirschsprung’s disease-like scenario.
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