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Modeling Repairable System Failure with Repair History and Covariates 
(Model Sistem Kegagalan Dibaiki dengan Sejarah Pembaikan dan Kovariat)
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Abstract

In this paper, we extended a repairable system model under general repair that is based on repair history, to incorporate 
covariates. We calculated the bias, standard error and RMSE of the parameter estimates of this model at different sample 
sizes using simulated data. We applied the model to a real demonstration data and tested for existence of time trend, repair 
and covariate effects. Following that we also conducted a coverage probability study on the Wald confidence interval 
estimates. Finally we conducted hypothesis testing for the parameters of the model.The results indicated that the estimation 
procedure is working well for the proposed model but the Wald interval should be applied with much caution. 
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Abstrak 

Dalam kertas ini,  kami melanjutkan model sistem dibaiki di bawah pembaikan am yang berdasarkan sejarah pembaikan, 
dengan menggabungkan kovariat. Kami mengira ralat, sisihan piawai dan PMRKD bagi penganggar parameter-parameter 
model ini pada sampel yang berbeza saiz dengan menggunakan data simulasi. Kami menguna pakai model ini kepada 
data demonstrasi sebenar dan telah menguji kewujudan kecenderungan masa, kesan pembaikan dan kovariat. Berikutan 
itu kami juga menjalankan kajian liputan kebarangkalian bagi anggaran selang keyakinan ‘Wald’. Akhirnya kami 
menjalankan pengujian hipotesis bagi parameter-parameter model. Keputusan yang diperoleh menunjukkan bahawa 
prosedur penganggaran berjalan lancar bagi model yang dicadangkan tetapi selang ‘Wald’ harus digunakan dengan 
berhati-hati.

Kata kunci: Kovariat; perbaikan umum; sistem diperbaiki

INTRODUCTION 

A system is said to be repairable when it can be resorted 
back to functionality after it has failed to perform at least 
one to its intended functions. Repair action can bring 
the system to one of the following states: as bad as old 
(minimal repair), as good as new (perfect repair) or better 
than old but worse than new (general repair) (Høyland 
& Rausand 1994). Many stochastic models have been 
developed for repairable systems assuming different 
repair effects. The period when the system is unable to 
function is referred to as repair time and is assumed to be 
negligible. The proportional intensity (PI) model and the 
virtual age model are popularly used to account for general 
repair effect. Lawless and Thiagarajah (1996) introduced 
a proportional intensity model that incorporates both 
time trends and renewal type behavior. Guo et al. (2007)
later proposed a new general repair model based on the 
expected cumulative number of failures to capture the 
repair history. The virtual age models by Kijima (1989) 
and Kijima and Sumita (1986) express the repair effect by 
a reduction of the system age unlike the PI models where 
the repair effect is expressed by a reduction of the system 
failure intensity (Guo et al. 2007). Other literatures on the 
repairable system models and recurrent events are Brown 
(1975), Cox and Lewis (1966), Crow (1974), Gasmi et al. 

(2003), Kaminskiy and Krivtsov (1998), Wang and Pham 
(1996) and Yañez et al. (2002). 
	 Most repairable system models do not include 
covariates or other factors that affect repair times. Røstum 
(2000) showed how the used covariates such as length or 
diameter of pipe, age and presence of clay can be very 
useful in analyzing pipe failures in water networks. The aim 
of this paper was to extend a repairable system model based 
on repair history to incorporate the effect of covariates. The 
baseline intensity function can be described using several 
forms such as the log-linear, power law or linear. In this 
paper we used the log-linear intensity function due to its 
flexibility and wide application. 
	 We briefly review the proportional intensity model for 
repairable systems. Then, we extend the model proposed 
by Guo et al. (2007) to incorporate several covariates. 
Following that, a simulation study is conducted to assess 
the accuracy and efficiency of the parameter estimates. 
Finally we present a numerical example with some 
applications of the proposed model. 

PROPORTIONAL INTENSITY MODEL 

The PI Model was first introduced by Cox (1972). PI 
model is used to model the intensity process of failures 
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and repairs of a repairable system which incorporates 
explanatory variables. Vlok et al. (2004) introduced a 
PI model for both non-repairable and repairable systems 
utilizing historic failure data and corresponding diagnostic 
measurements. Lawless and Thiagarajah (1996) introduced 
a proportional intensity model where the failure intensity 
function conditional on the history up to time t, Ht is λ(t, Ht) 
= eθ́x(t), where x(t) = (x1(t),…, xp(t))́ is a vector of functions 
that may depend on both t and Ht and θ = (θ1,…,θp)́ is 
the vector of unknown parameters. He then studied a PI 
model that incorporates both time trends and renewal type 
behavior with the following failure intensity, 

	 λ(t) = exp(α + βt + γ(t – tN(t–)),	 (1)

where α, β, γ are the parameters of the model and t – tN(t–) 
is the time of the last failure before t. Guo et al. (2007)
proposed another general repair model based on expected 
cumulative number of repairs or failures where, 

	 λ(t) = λ0(t) exp [θ́x(t)] = λ0(t) exp [γm(t)],	 (2)

and λ0(t) is the baseline failure intensity function and m(t) 
= E[N(t)], where N(t) is the cumulative number of failures 
up to time t. 

MODEL DEVELOPMENT 

Maintenance action often brings a system somewhere 
between new and old state. Therefore a general repair 
model is more realistic for describing maintenance effort. 
All covariates that could have influence on the rate of 
occurrence of failures should be included in the statistical 
model. This would help in understanding the significance 
of each covariate on the failure history. Most of the systems 
are influenced by different covariates that can be either 
time varying or fixed. Fixed covariates have values that are 
independent of time for each failure. Here, we assume that 
the system is a network consisting of smaller components. 
Also, we have a series of i = 1, 2, …, n events triggered 
by different components with covariate value xi at the ith 
failure. For the log-linear baseline intensity function, the 
effect of the covariates can be incorporated in the failure 
intensity function as given below, 

	 λ(t) = eβ́x+gt+γm(t).	 (3)
	
	 Here x́ = (x0, x1, …, xp) is the vector of covariate 
values, where x0 = 1 and β́ = (β0, β1, …, βp), g and γ 
are the parameters of the model and m(t) is the expected 
cumulative number of failures up to time t. Suppose we 
have a series of i = 1, 2, …, n events. If the cumulative 
number of failures up to time ti is (i – 1), h1i= eβ́xi+gti –1+γ(i – 1), 
h2i = eβ́xi+gti+γ(i–1), the conditional reliability function before 
the ith failure is, 

	 R(ti⎪ti–1) = exp 		  (4)

The conditional pdf for the ith failure is then,

	 f (ti⎪ti–1) = h2i exp ,		  (5) 

and the corresponding log-likelihood function for observed 
data on n events is,
	
	 l(β,g) = 	 (6)

	 The first and second derivations of the log-likelihood 
function with respect to parameters are, 

	

	

	

	

	
	 	

	

	

	
	

	

SIMULATION STUDY 

Simulation studies using 1000 samples of n events where 
n=50,80,100,150 and 200 were conducted for the new 
model with one covariate. The covariate values were 
simulated from the standard normal distribution. The 
values of -3.2, 0.05, 0.045 and -0.05 were chosen as the 
initial values of parameters β0, β1, g and  γ. These values 
were chosen specifically to give us failure times that are 
similar to those found in pipeline failures. Suppose we 
have i = 1,2,…, n failures. Random numbers, u0, were 
generated from the uniform distribution on the interval (0, 
1), to produce ti as follows, 
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SIMULATION RESULTS 

Table 1 shows the results of the bias, standard error and 
RMSE for the parameter estimates of the new model at 
different sample sizes. Both bias and std.error contribute 
to the average error size of an estimator, thus the RMSE = 

 is used to measure the average overall error of 
the parameter estimates. 

the true parameter value divided by the total number of 
samples. The estimated left (right) error probability was 
calculated by adding the number of times the left(right) 
end point was more(less) than the true parameter value 
divided by the total number of samples, N. Figures 1 to 4 
show the estimated coverage probability for parameters 
β0, β1, g and γ at α = 0.05. 
	T he Wald interval is known to work well only when 
sample sizes are rather large and is prone to be highly 
asymmetrical (Arasan & Lunn 2009). Thus, we calculated 
the estimated coverage probabilities for sample sizes n= 
50, 80, 100, 150 and 200. The results indicated that the 
Wald interval works rather well for parameters β0 and β1, 
although there are quite a few asymmetrical intervals. 
However, for parameters g and γ the performance is rather 
poor with several anti conservative and asymmetrical 
intervals but starts to improve when sample size increases 
(Table 4). 
	T he Wald does not produce any conservative intervals 
and when sample size increases, the number of anti-
conservative intervals decreases. Thus, the Wald interval 
should be applied with caution especially for parameters  
g and γ (Table 5). Arasan and Lunn (2008) showed that 
other methods can work better than the Wald for moderate 
and low sample sizes. Therefore, other confidence interval 
estimation techniques, such as the parametric bootstrap can 
be investigated in future to compare their performance with 
the Wald interval. 

NUMERICAL EXAMPLE 

A pipeline failure demo data is fit to the proposed model 
with two covariates. This data set contains structural data 
from the pipes, such as diameter and length of pipe, which 
are the covariates of the model and maintenance data is the 

TABLE 3. RMSE of the estimates 

n

50 1.18237 0.14737 0.03090 0.05818 
80 0.93449 0.18243 0.01973 0.02939 
100 0.88680 0.13601 0.01794 0.02540 
150 0.72913 0.11509 0.01359 0.01768 
200 0.64230 0.09174 0.01095 0.01327

TABLE 2. Standard error of the estimates

n

50 0.88721 0.14737 0.02307 0.04548 
80 0.75070 0.18239 0.01551 0.02356 
100 0.74675 0.13589 0.01510 0.02191 
150 0.60570 0.11509 0.01127 0.01499 
200 0.53769 0.09170 0.00902 0.01104

TABLE 1. Bias of the estimates

n

50 -0.78158 0.00094 0.02056 -0.03629 
80 -0.55653 0.00389 0.01219 -0.01757 
100 -0.47831 0.00568 0.00968 -0.01284 
150 -0.40591 -0.00063 0.00758 -0.00938 
200 -0.35134 -0.00273 0.00620 -0.00736

	 From the results we can see that all values of bias, 
standard error and RMSE were relatively low for all the 
parameter estimates. When n increase, the standard error 
and RMSE values clearly decreased. This decreasing trend is 
also apparent for the values of bias of  and  but not 
that clear for . However, overall we can conclude that 
the estimation procedure is working well for the proposed 
model (Tables 2 & 3). 

CONFIDENCE INTERVAL ESTIMATES 

Let be the maximum likelihood estimator for parameter θ 
and l(θ) the log-likelihood function of θ.  is asymptotically 
normally distributed with mean θ and covariance matrix 
I–1(θ), where I(θ) is the Fisher information matrix evaluated 
at the true value of the parameter θ. The matrix I(θ) which 
is not available can be replaced by the observed information 
matrix I( )  whose (j, k)th element can be obtained from the 
second partial derivatives of the log-likelihood function 
evaluated at . The estimate of var( j) is then given by the 
(j, j)th element of I–1( ) . If  is the  quantile of the 
standard normal distribution the 100(1 – α)% confidence 
interval for θj is given by the following, 

	 	 (7)

	 The coverage probability of a confidence interval is 
the probability that the interval contains the true parameter 
value and should preferably be equal or close to the 
nominal coverage probability (1 – α). We conducted a 
coverage probability study with N = 1000 samples to 
assess the performance of the intervals. Following that, we 
calculated the estimated total error probabilities by adding 
the number of times in which an interval did not contain 
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FIGURE 3. Estimated error probabilities for g at α = 0.05

FIGURE 1. Estimated error probabilities for β0 at α = 0.05
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FIGURE 2. Estimated error probabilities for β1 at α = 0.05 

n

n



	 	 985

time to failures of the pipe network. The failure intensity 
λ(t) = eβ0+β1x1+β2x2+gt+γ(i–1) is assumed where β0, β1, β2, g and γ 
are the parameters and x1 and x2 are the covariates (diameter 
and length) and t is the failure time. Table 6 gives the value 
of the parameter estimates for this model. 

TESTS FOR REPAIR AND COVARIATE EFFECTS USING 
LIKELIHOOD RATIO (LR) TEST 

The likelihood ratio (LR) test is used to test the significance 
of adding an additional parameter to the model. The basic 
idea of a likelihood ratio test is to compare the maximized 
likelihood of two nested models, the full model and the 
reduced model. The reduced model is restricted by certain 
conditions given in null hypothesis, H0.
	 Let  be the maximum likelihood estimator of the 
restricted model under H0 and  the maximum likelihood 
estimator of the full model. The maximized likelihood 
of the reduced model can never exceed the maximized 
likelihood of the full model because it is a subset of the 

full model. Thus, the ratio of the maximized likelihood of 
the reduced model to the full model is bounded between 0 
and 1. A ratio close to 1 indicates that the reduced model is 
close to the full model whereas a ratio close to 0 indicates 
that the two models are quite different and that the reduced 
model is unacceptable. If l is the log-likelihood function, 
the likelihood ratio statistic for testing H0versus H1 is the 
given by the following, 

	 Λ = -2[l( ) – l( )     ].

	T he LR statistics, Λ, follows the  distribution with 
k degree of freedom, where k is the number of parameters 
in the full model minus the number of parameters in the 
reduced model. The following test can be conducted to see 
if there is a significant repair effect, 

	 H0: No repair effect exists (γ = 0).

	 H1: Repair effect exists (γ ≠ 0).  

TABLE 4. Summary of internal estimates at α = 0.05

Parameter Conservative Anti Conservative Asymmetrical
 β0 0 0 5
β1 0 0 0
g 0 2 5
γ 0 4 5

TABLE 5. Summary of interval estimates at α = 0.05 for different sample sizes 

sample size Conservative Anti-conservative Asymmetrical
50 0 2 3
80 0 2 3
100 0 1 3
150 0 0 3
200 0 1 3
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FIGURE 4. Estimated error probabilities for γ at α = 0.05
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	 Under the null hypothesis the test statistic Λ  = 6.172 
is greater than . Therefore, H0 is rejected at α = 
0.05 and this means that the repair effect is significant. 
	 Similarly, the following tests can be implemented to 
check the significance of the covariates, diameter 

	 H0: No covariate (diameter) effect exists (β1 = 0). 

	 H1: Covariate (diameter) effect exists (β1 ≠ 0).

and length,

	 H0: No covariate (length) effect exists (β2 = 0).

	 H1: Covariate (length) effect exists (β2 ≠ 0).

	I n the test involving the diameter(length) as covariate,  
Λ = 4.202(4.587) and is greater than . This 
indicates that both diameter and length have significant 
effect on the pipefailures. These tests show the evidence 
of repair and covariate effects in the model. Therefore 
the full model can be utilized for the subsequent analysis. 

Figure 5 illustrates the estimates of the expected number 
of failure m(t) for the data set with 2 covariates. It seems 
that the model fits the data quite well. 

CONCLUSION 

In this paper, we extended a general repair model based 
on repair (failure) history to incorporate fixed covariates. 
This model will be practical since it allows us to capture 
the effect of covariates in addition of capturing the time 
trend and repair effects thus enabling us to understand how 
they contribute to failures. The simulation study clearly 
showed that the model works well and is easy to use with no 
convergence or computational problems. The model also 
worked well when it was applied to real demo data from 
pipe failures where it indicated that the covariates, diameter 
and length have significant effect on pipe failures. This 
model will be very useful in real industrial applications 
because of its ability to capture time trend, repair and 
covariate effects simultaneously. 

TABLE 6. Estimates of model for pipe network failures

Parameter Estimates Std.errors Wald intervals-90% Wald intervals-95%
β0 −5.52743 1.40145 (-7.83283,-3.22204) (-8.27428,-2.78058)
β1 −0.08334 0.18450 (-0.38685,0.22017) (-0.44497,0.27829)
β2 0.19457 0.24926 (-0.21547,0.60460) (-0.29399,0.68312)
g 0.00133 0.00055 (0.00041,0.00224) (0.00024,0.00241)
γ −0.15379 0.06450 (-0.25989,-0.04769) (-0.28020,-0.02737)

FIGURE 5. Estimates of the expected number of failures 
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