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ABSTRACT

The scale-space method has been widely used in handling image data at multiple scales. 
Application of Gaussian filtering in different field includes human vision problem, medical 
data, financial data and electroencephalogram (EEG) signal. The main purpose of this paper is  
to apply the Gaussian scale-space method by determining a suitable σ value in order to smooth  
rope skipping data. Smoothing technique using a Gaussian kernel with a selection of  
bandwidth (σ) and time (x) is applied. It is found that the tolerance value of σ can be used to 
smooth not only one set of data, but also other biomechanical data of different anatomical  
body landmarks.
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ABSTRAK

Kaedah ruang-skala telah digunakan dengan meluas dalam pengendalian data imej pada skala 
yang berganda. Aplikasi penapisan Gaussan telah digunakan dalam pelbagai bidang termasuk 
masalah penglihatan manusia, data perubatan, data kewangan dan isyarat elektroensefalogram 
(EEG). Tujuan utama kajian ini adalah untuk menggunakan kaedah ruang-skala Gaussan 
dengan memilih satu nilai σ yang bersesuaian untuk melicinkan data aktiviti lompat tali.  
Teknik pelicinan menggunakan inti Gaussan digunakan dengan memilih jalur lebar (σ) dan 
masa (x). Hasil kajian mendapati nilai σ yang dipilih boleh digunakan bukan hanya pada satu 
set data sahaja, tetapi juga boleh digunakan untuk data biomekanik yang lain pada kedudukan 
anatomi badan yang berbeza.

Kata kunci: kaedah ruang-skala Gaussan; lompat tali; pelicinan

1. Introduction 

The Gaussian scale-space method has been used for analysing various kinds of data such as 
human and computer vision problems (Lindeberg 1994a; Romeny 2003; Young 1987), financial 
Kuala Lumpur Composite Index (KLCI) and electroencephalogram (EEG) data (Karim & Kong 
2011), volumetric tumor characterisation (Okada et al. 2004), blood glucose concentrations 
(Skrøvseth & Godtliebsen 2011),vessels structures (Yi & Hayward 2002) and many more. 
None has been done on biomechanical data. 

Therefore, the main purpose of this paper is to apply the Gaussian scale-space method 
in analysing rope skipping data. The work intends to determine a suitable σ value in order to 
smooth rope skipping data. So far, most of biomechanical data use Butterworth filtering method 
(Roithner et al. 2000; van den Bogert & de Koning 1996; Challis 1999), splines (Woltring 
1986) and other techniques (Wood 1982). 
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2.	 Method 

2.1.	  Linear scale-space concept

If we have N-dimensional continuous signal ,Cf  which is denoted as

fC (x1,x2 ,...,xN ,t)                                                                                                (1)

with x is time and t is scale, and N-dimensional Gaussian kernel, ,NG 	
  

1 2( , ,..., , ),N NG x x x t                                                                                              (2)

then the linear scale space L, is obtained through a convolution of the two signals Cf 	
  and NG 	
  
which can be written as,
L(x1,x2 ,...,xN ,t) =

...
u2=−∞

∞

∫
    fC (x1 − u1,x2 − u2 ,...,xN − uN ,t) i GN (u1,u2 ,...,uN ,t) du1 du2 ... duN
    uN =−∞

∞

∫
u1=−∞

∞

∫ .  (3)

However, to apply this to real discrete data such as biomechanical data, this definition is 

impractical. When applying the scale space concept to a discrete signal, ,Df different approaches 
can be taken. The following summarises the Gaussian scale-space method of discrete data 
(Lindeberg 1994b).

2.2.	 Separability Property

Using the separability property of the Gaussian kernel,

1 2 1 2( , ,..., , ) ( , ) ( , )... ( , )N N NG u u u t G u t G u t G u t= 	
                                                 (4)

the N-dimensional convolution operation can be decomposed into a set of separable smoothing 
steps with a one-dimensional Gaussian kernel G along each dimension
L(x1,x2 ,...,xN ,t) =

...
u2=−∞

∞

∫
   fC (x1 − u1,x2 − u2 ,...,xN − uN ,t) i G(u1,t) du1G(u2 ,t) du2...G(uN ,t) duN
   uN =−∞

∞

∫
u1=−∞

∞

∫        (5)

where

G(x,t) = 1
2π t

e− x
2 /2t .                                                                                         (6)
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2.3.	 The Sampled Gaussian Kernel

In this paper, the Gaussian scale space algorithm focuses on the one-dimensional case. When 
implementing the one-dimensional smoothing step in practice, the presumably simplest 

approach is to convolve the discrete signal Df with a sampled Gaussian kernel,

( , ) ( ) ( , )
n

L x t f x n G n t
∞

=−∞

= −∑
	
  
                                                                              (7)

where 
2 /21( , )

2
n tG n t e

tπ
−=                                                                                           (8)

(with 2t σ= ) which in turn is truncated at the ends to give a filter with finite impulse response

( , ) ( ) ( , )
M

n M
L x t f x n G n t

=−

= −∑                                                                               (9)

for M chosen sufficiently large such that

/

2 ( , ) 2 ( ,1) .
u M v M t

G u t du G v dv ε
∞ ∞

= =

= <∫ ∫
	
  
                                                           (10)

A common choice is to set M to a constant C times the standard deviation of the Gaussian kernel

1 1M C C tσ= + = +                                                                                                                  (11)

where C is often chosen somewhere between 3 and 6.
Using the sampled Gaussian kernel can lead to implementation problems, in particular when 

computing higher-order derivatives at finer scales by applying sampled derivatives of Gaussian 
kernels. When accuracy and robustness are primary design criteria, alternative implementation 
approaches should therefore be considered.

2.4.	 Gaussian Scale-Space

Smoothing technique using a Gaussian kernel extracts important features of the original 
discrete data (Wand & Jones 1995). However, this approach is heavily dependent on the choice 
of bandwidth or scale and space thus is difficult to know which features are significant or not. 
However, it is true that significant structure may emerge at a variety of scales and that the 
significant features may disappear again at different scales. We treat a scale space in time, 
where each location is denoted by a time x and a scale or bandwidth, σ. 

Considering values recorded at times , 1, 2,..., ,ix i N= we have a smoothed density estimator 
(Wand & Jones 1995),
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1

1ˆ ( ) ( ),
N

i
i

f x G x x
Nσ σ

=

= −∑                                                                                   (12)

where ( )G xσ  is the Gaussian kernel,

2

22
1 2

1( , ) .
2

x

DG x e σσ
πσ

−
=

	
  
                                                                                    (13) 

The Gaussian kernel is used as a standard for density smoothing due to the fact that it is unique 
in that it has a monotone decrease of zero crossings of the derivative smooth with increasing 
bandwidth (Silverman 1981; Babaud et al. 1986). This means that features are monotone in 
scale space. It should be noted that the value of σ must be greater than 0 ( 0).σ >

2.5.	 Data Aquisition

In this study, we conducted an experiment of rope skipping activity in order to obtain the data. 
Subjects were required to skip until they complete five cycle of rope skipping for each trial and 
repeated the trial for six times. One cycle of rope skipping starts from the moment a subject is 
ready to skip until both of the legs touch the ground again for landing.

After obtaining the data, we apply Gaussian scale-space as a method of filtering to the 
biomechanic data. The data of interest are data at the ankle, knee and hip joints. The data 
consisted of 216 frames (x) and contaminated with noise. The source of error or noise may be 
resulted from misalignment of the cameras, different types of cameras used, lenses, calibration 
objects, skin movement, incorrect digitisation or other factors (Wood 1982; Winter 2005; Allard 
et al. 1995; Robertson et al. 2004). 

3.	 Results 

In this section, we will discuss the application of Gaussian scale-space for data smoothing. 
Taking all trials into account, we analyse repeated skipping cycles throughout the skipping 
activity. Figure 1 illustrates one complete cycle of the rope skipping activity. Raw data of 
ankle angles for five cycles during skipping performance is shown in Figure 2. This data was 
smoothed by a Gaussian kernel with a data-driven bandwidth computed using the Gaussian 
scale-space algorithm (Karim & Kong 2011).

Figure 1: Rope skipping activity in one complete cycle 
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Figure 2: Raw ankle angle data for 5-cycle of skipping performance

(a)

(b)

Figure 3: The filtered (dot-dashed line) and unfiltered (line) data when (a) σ = 0.5 and (b) σ = 6.5

Based on trial and error basis, we selected 20 different values of σ ranged from 0.5 to 6.5 
in order to obtain a suitable σ value for the rope skipping data. By increasing the value of σ, the 
smoothed graph will diverge from the original data. Hence, the suitable σ might lie between 
these ranges of values. Figure 3 shows the differences between filtered (dot-dashed line) and 
unfiltered (line) data when σ = 0.5 and σ = 6.5.
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Figure 4: Combinations of unfiltered data (line), and filtered data when σ = 1.65 (dotted line) and  
σ = 4.5 (dashed line)

Figure 4 shows a family plot of selected readings through the entire trial period using a 
kernel density estimator with Gaussian kernel smooth and different bandwidth (σ). It shows a 
combination of unfiltered data (line), and filtered data with σ = 1.65 (dotted line) and with σ = 
4.5 (dashed line).

We choose a range of bandwidth such that we capture all the relevant scales, that is, from 
the smallest scale at which a significant feature was preserved to a larger scale which caused a 
divergent from the original data.

In order to obtain the preferred value of σ, we perform a residual analysis of the difference 
between filtered and unfiltered signals. The term residuals are referred to what is left over when 
the filtered data is subtracted from the raw data. When we filtered only noise, some of the 
residual values should be greater than zero and some are less than zero. The sum of all residuals 
should equal to zero or at least close to zero (Robertson et al. 2004; Christodoulakis et al. 2010). 

The residuals are calculated as follows for a signal of N sample points in time,

2

1

1 ˆ( )
N

i i
i

R X X
N =

= −∑                                                                                      (13)

where ˆraw data for the th sample, and filtered data for the th sample.i iX i X i= = 	
    
For the rope skipping data, we selected a suitable σ based on the residual analysis which 

gives the sum of all residuals that is closer to zero. From the result obtained, the residuals 
appear randomly scattered around zero which indicates that the chosen parameter describes the 
data well. Since all data are slightly equals to zero, we take the smallest value which is closer 
to zero. 

Table 1 shows 20 different values of σ and the sum of residuals for three sets of rope 
skipping data (ankle, knee and hip joints).
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Table 1: Twenty different value of σ ranged from 0.5 to 6.5

Values of σ Sum of residuals 
(ankle)

Sum of residuals 
(knee)

Sum of residuals 
(hip)

0.50 4.11752E-09 -2.13838 -1.07016
1.00 -2.62753E-07 -7.95449E-07 -3.98085E-07
1.10 -4.16188E-09 -1.25993E-08 -6.30546E-09
1.20 -4.43618E-11 -1.34096E-10 -6.72066E-11
1.30 -2.64178E-13 -6.10956E-13 -3.81695E-13
1.40 6.3366E-14 3.70259E-13 1.03695E-13
1.50 5.00155E-14 3.35953E-13 8.03801E-14
1.55 5.88696E-14 2.921E-13 9.9809E-14
1.60 5.07649E-14 3.12639E-13 8.11573E-14
1.65 4.98213E-14 3.26073E-13 7.26086E-14
1.70 6.15341E-14 3.57714E-13 1.06581E-13
2.00 7.63556E-14 3.20854E-13 9.65894E-14
2.50 5.80647E-14 3.40172E-13 9.71445E-14
3.00 6.42264E-14 2.69673E-13 1.03861E-13
3.50 8.18789E-14 2.49578E-13 1.21292E-13
4.00 7.17759E-14 1.71196E-13 1.10967E-13
4.50 7.26641E-14 1.6509E-13 1.06082E-13
5.00 8.11018E-14 1.82965E-13 1.01585E-13
5.50 9.55902E-14 2.08833E-13 1.11078E-13
6.50 9.37028E-14 1.93512E-13 1.24567E-13

At first, we choose the smallest value for sum of residuals to determine σ in filtering step for 
the Gaussian scale-space algorithm. Figure 5 shows the filtered (dot-dashed line) and unfiltered 
(line) data with σ = 1.65 for smoothing ankle joint angle. It can be observed that the spikes are 
eliminated and the data are very well smoothed.

Figure 5: Filtered (dot-dashed line) and unfiltered (line) data when σ = 1.65 for smoothing ankle joint angle
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Figure 6: Filtered (dot-dashed line) and unfiltered (line) data when s = 4.50 for smoothing knee joint angle

Figure 7: Filtered (dot-dashed line) and unfiltered (line) data with σ = 1.65 for smoothing knee joint angle

Figure 6 shows the filtered (dot-dashed line) and unfiltered (line) data when σ = 4.50 for 
smoothing knee joint angle. Based on the graph plotted, as we take a closer look at the knee 
data, we found that the smallest value for sum of residual could not be taken due to a high 
divergent between filtered and unfiltered data. As the graph depicted, we can observed that 
the main features of the data are loosened away. The over-smoothed data have caused the 
information that describes the skipping performance, especially the degree of flexion of knee 
in certain events, to be misleading. Hence, we choose σ value of 1.65 for the knee data where 
the main features of the knee joint angles are preserved while smoothing the extreme values.

Figure 7 shows the filtered (dot-dashed line) and unfiltered (line) data with σ = 1.65 for 
smoothing knee joint angle. It can be observed that the Gaussian scale-space method preserved 
the main features of the data and smooth the data well. 

For smoothing hip angle data, Figure 8 shows the filtered (dot-dashed line) and unfiltered 
(line) data when σ = 1.65. We can observed that the main features of the signal is preserved 
while smoothing the data.
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Figure 8: Filtered (dot-dashed line) and unfiltered (line) data with σ = 1.65 for smoothing hip angle

4.	 Discussion

Gaussian scale-space method has been widely used in computer vision to sharpen images and 
smooth data but none has been done on biomechanical data. Usually, different data set will use 
different scale to preserve the original image.

The value of σ or the chosen standard deviation for the Gaussian Scale-space depends on 
the individual selection, as long as the main features of the signal exist, the filtering eliminates 
spikes and smooths the data. This technique answers in a quantitative way which features 
dataset that really exists in a meaningful way, even if the emergent features appear only on a 
particular scale. The technique avoids the question of bandwidth selection by investigating all 
scales.

By using a very small value of σ, which is σ = 0.5 in this study, filtered data resembled the 
original data and also was not well smoothed. This means that the spikes or noise still exist in 
the data stream after filtering is done. On the other hand, a bigger value of σ such as σ = 6.5 
produce smoothed data but the filtered data are diverged from the original data and all become 
positive values which did not preserve the main features. 

Karim and Kong (2011) used Gaussian scale-space to filter Kuala Lumpur Composite 
Index (KLCI) data and found that the chosen σ value lies between four and five. The study also 
found that a σ value close to one will result in smoothed data which is closed to the original 
data. However, for the rope skipping data, values of σ = 4 or σ = 5 will cause the smoothed data 
to diverge from the original dataset. Thus, the values are not suitable for the biomechanical 
data. Instead the sum of residuals is used as the measure of a good σ value. It was found that 
a smaller sum of residuals will smooth the data well and eliminate spikes while preserve the 
main features of the data. The objective is achieved by choosing σ = 1.65 to remove the spikes, 
hence smoothing the data. Furthermore, using the same σ value works for the other sets of data. 
For that, it can be said that the Gaussian scale-space method can be applied for smoothing 
biomechanical data. 



Nor Atikah Ab Ghani, Azmin Sham Rambely & Samsul Ariffin Abdul Karim 

116 117

5.	 Conclusion

In this work, we apply the Gaussian scale-space method to biomechanical data, specifically data 
for a rope skipping activity. It is found that one empirically chosen value of σ can be applied 
to different sets of data without the need to do the trial and error procedure for the other data 
sets. Hence, it is concluded that one σ value can be used throughout different anatomical body 
landmark for rope skipping data.

Acknowledgments 

The authors gratefully acknowledge the supports received in the form of grants by the Universiti 
Kebangsaan Malaysia (GUP-2012-004 and DPP-2013-089).

References

Allard P., Stokes I.A.F. & Blanchi J.P. 1995. Three-Dimensional Analysis of Human Movement. Illinois: Human 
Kinetics. 

Babaud J., Witkin A.P., Baudin M. & Duda R.O. 1986. Uniqueness of the Gaussian kernel for scalespace filtering. 
IEEE Transactions on Pattern Analysis and Machine Intelligence 8(1): 26–33. 

Challis J.H. 1999. A procedure for the automatic determination of filter cutoff frequency for the processing of 
biomechanical data. Journal of Applied Biomechanics 15: 303-317. 

Christodoulakis G., Busawon K., Caplan N. & Stewart S. 2010. On the filtering and smoothing of biomechanical 
data.7th International Symposium on Communication Systems Networks and Digital Signal Processing 
(CSNDSP), 21-23 July 2010, pp. 512-516.

Karim S.A.A. & Kong V.P. 2011. Data Smoothing using Gaussian Scale-space and Discrete Wavelet Transform. 
Proceedings of International Conference on Electrical, Control and Computer Engineering (INECCE), 21-22 
June 2011, pp. 344-348. 

Lindeberg T. 1994a. Scale-space theory: A basic tool for analysing structures at different scales. Journal of Applied 
Statistics 21(2): 225-270.

Lindeberg T. 1994b. Scale-Space Theory in Computer Vision. Stockholm: Kluwer Academic Publishers.
Okada K., Comaniciu D. & Krishnan A. 2004. Scale Selection for Anisotropic Scale-Space: Application to Volumetric 

Tumor Characterization. IEEE Computer Society Conference on Computer Vision and Pattern Recognition 
(CVPR’04) 1: 594-601.

Robertson D.G.E., Caldwell G.E., Hamill J., Kamen G. & Whittlesey S.N. 2004. Research Methods in Biomechanics. 
Leeds: Human Kinetics. 

Roithner R., Schwameder H. & Mueller E. 2000. Determination of Optimal Filter Parameters For Filtering Kinematic 
Walking Data Using Butterworth Low Pass Filter. 18th International Symposium on Biomechanics in Sports. 
http://w4.ub.uni-konstanz.de/cpa/article/viewFile/2197/2055 (June 2013).

Romeny B.H. 2003. Front-End Vision and Multi-Scale Image Analysis, Multi-Scale Computer Vision Theory and 
Applications, written in Mathematica. Berlin: Springer Sciences.

Silverman B.W. 1981. Using kernel density estimates to investigate multimodality. Journal of the Royal Statistical 
Society Series B 43: 97–99. 

Skrøvseth S.O. & Godtliebsen F. 2011. Scale space method for analysis of type 2 diabetes patients’ blood glucose 
values. Computational and Mathematical Methods in Medicine 2011: 19-25. 

van den Bogert A.J. & de Koning J.J. 1996. On Optimal Filtering for Inverse Dynamics Analysis. Proceedings of the 
IXth Biennial Conference of the Canadian Society for Biomechanics, pp. 214-215. 

Wand M.P. & Jones M.C. 1995. Kernel Smoothing. Florida: Chapman & Hall/CRC. 
Winter D.A. 2005. Biomechanics and Motor Control of Human Movement. Hoboken, NJ: John Wiley & Sons, Inc. 
Woltring H.J. 1986. A Fortran package for generalized cross validatory spline smoothing and differentiation. 

Advances in Engineering Software 8: 104-113. 
Wood G.A. 1982. Data smoothing and differentiation procedures in biomechanics. Exerc. Sport Sci. Rev. 10: 308-62.
Yi D. & Hayward V. 2002. Skeletonization of volumetric angiograms for display. Computer Methods in Biomechanics 

and Biomedical Engineering 5(5): 329-341.



Smoothing rope skipping data using Gaussian scale-space method

116 117

Young R.A. 1987. The Gaussian derivative model for machine vision: Visual cortex simulation. J. Optical Soc. Am. 
2: 39.

Pusat Pengajian Sains Matematik 
Fakulti Sains dan Teknologi
Universiti Kebangsaan Malaysia
43600 UKM Bangi
Selangor DE, MALAYSIA
Mel-e: noratikah86@yahoo.com, asr@ukm.my* 

Fundamental and Applied Sciences Department
Universiti Teknologi Petronas
Bandar Seri Iskandar
31750 Tronoh
Perak DR, MALAYSIA
Mel-e: samsul_ariffin@petronas.com.my

_____________________
*Penulis untuk dihubungi


