MEMS switch contact bouncing mitigation using novel dual-pulse actuation voltage

Lai .C.H, and Wong .W.S.H, (2011) MEMS switch contact bouncing mitigation using novel dual-pulse actuation voltage. Sains Malaysiana, 40 (3). pp. 283-286. ISSN 0126-6039

[img]
Preview
PDF
529kB

Official URL: http://www.ukm.my/jsm

Abstract

A novel dual-pulse actuation voltage that reduces dielectric charging in micro-electromechanical system (MEMS) switch and thus leading to a longer switch lifetime, are shown to simultaneously mitigate MEMS switch contact bouncing. A simple mass-spring-damper mathematical model is used to simulate movement of the switch contact as the excitation voltage is applied. The model shows that the novel dual-pulse voltages damped the acceleration of the switch membrane as it approaches the contact point, eventually slowing it down and minimized the impact force. This has the effect of minimizing the occurrence of contact bouncing. Practical experiment on the commercial TeraVicta TT712-68CSP MEMS switch corroborates that the novel excitation voltages reduced bouncing

Item Type:Article
Keywords:Contact bouncing; micro-electromechanical system (MEMS); radio frequency (RF); reliability )
Journal:Sains Malaysiana
ID Code:710
Deposited By: Mr Azam
Deposited On:23 Mar 2011 04:25
Last Modified:14 Dec 2016 06:27

Repository Staff Only: item control page