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ABSTRACT

The road patierns of major metropolitan areas and constituent
Jurisdictions evolve slowly through a complex set of independent and
interdependent decisions producing a transportation network. The
resulting network must be used for variety of commuting and spatial
interaction activity. A typical trip taker spends considerable time on the
road to reach the workplace and other destinations. Adding more links to
existing road networks and/or increasing traffic capacity by adding lanes
does not necessarily decrease travel times. However, a dense redundant
network of roads provides a trip taker with alternate routes when traffic
congestion occurs. Such issues raise the question of, how to evaluate the
flow characteristics of the entire road network of a jurisdiction or its
larger region? We explore a methodology to evaluate fitness criteria for
road networks based on Kauffman’s evolutionary complexity or NK model
(1993) and develop an information theoretic measure of the order or
organization in transportation networks.

ABSTRAK

Bentuk jalanraya bagi kawasan metropolitan dan kawasan sekitar
berubah perlahan-lahan melalui rangkaian pengangkutan yang kompleks
sama ada secara bebas atau bergantungan antara satu sama lain,
Rangkaian ini perlu digunakan untuk pelbagai aktiviti perhubungan dan
interaksi ruang. Seorang pengguna jalanraya mengambil masa yang agak
lama untuk sampai ke tempat kerja dan destinasi lain yang dituju. Dengan
menambahkan lebih banyak hubungan kepada jalonraya sedia ada tidak
semestinya mempercepdtkan masa perjalanan. Walau bagaimanapun,
rangkaian jalanraya yang padat menyediakan pengguna jalanraya
dengan jalan-jalan alternatif apabila berlakunya kesesakan. Isu ini
menimbulkan persoalan seperti bagaimana menilai ciri-ciri aliran dalam
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rangkaian jalan di pelbagai wilayah? Kita mencuba satu kaedah untuk
menilai kriteria kesesuaian bagi rangkaian jalan raya berdasarkan kepada
kekompleksan evolusi Kawffman atau model Nk (1993) dan mengem-
banglan satu ukuran maklumat secara teori bagi susunan atau organisasi
yang berkait dengan rangkaian pengangkutan.

INTRODUCTION

Urban road networks are characterized by traffic congestion, incidents
and accidents (Lave 1985), resulting in travel delays for commuters and
other trip takers. The interaction costs of such congestion in a regional
economy are enormous and factoring in work time lost to business and
commuters makes the sums astronomical {(Arnott & Small 1994).
Increasing capacity of existing freeways by adding more lanes is not
always possible or environmentally desirable and does not always ease
the delays. The much studied Braess’s paradox tells us that congestion
may increase rather than decrease as capacity is increased (Murchland
1970). However, the costs of incidents and accidents could be reduced if
the trip taker is provided with timely warnings of such events. Intelligent
Transportation Systems (ITS) traveler management systems hold the
promise of providing information on traffic conditions. However,
providing data on traffic conditions alone may be of little help if there is
no underlying processing framework to evaluate and disseminate the
processed information,

Figures 1 and 2 show the schematics of the existing traffic
management arrangement framework in many metropolitan settings. An
urban traffic flow network is divided among a number of zones and has
one or more traffic management center (TMC) in each zone, The data
collected by non-intrusive surveillance equipment (Figure 2) in each zone
is processed by a traffic management center (TMC) in that zone and
disseminated to users. In this paper we develop an analytical model of
the TMC data processing unit and suggest some underlying considerations
that need to be assessed in developing a decision framework for traffic
guidance and management. The analytical model is based on concepts
borrowed from evolutionary biology, especially the concept of fitness
landscapes (Kauffman 1993) and information theory (Appelbaum 1996;
Suhir 1997) to describe the organization or order of traffic networks.

So far, with the exception of a few, much of the modeling efforts to
describe network traffic flows are based on physical analogs such as fluid
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dynamics (Herman & Prigogne 1979), percolation (Kulkarni & Stough
2000) and spin glass physics (Kulkarni et al. 1996). A survey of the
literature shows many attempts to model the dynamics as well as the
equilibrium/disequilibrium network flow conditions that exist on urban
road networks. Both analytical and simulation/experimental studies have
been done (Friesz et al. 1996; Friesz et al. 1993; Friesz et al. 1994;
Mahmassani 1995; Mahmassani et al. 1990; Mahmassani et al. 1992,
Mahmassani and Peeta 1992; Koutsopoulos 1995). While some modelers
have addressed the stochasticity of traffic flows by trying to reduce the
randomness - following the so-called micro-simulations approach (for
pioneering work see Mahmassani and Herman (1987), Mahmassani et al.
(1990), and the TRANSIMS (1995) model developed by the transportation
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FIGURE 2. A Traffic management center (TMC) flow chart
(Schematic inspired by Mahmassani 1995.)
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group at Los Alamos National Laboratory (Barrett et al. 1995, Smith
et al. 1995).

MOTIVATION

In various degrees and shades biological models have been adapted by
tields as different as cosmology {evolutionary universe; Linde 1994;
Coleman et al. 1991), economics (evolutionary economics; Tu 1992,
Krugman 1994, 1995; Arthur 1989), and sociobiology (Wilson 1995).
Although many workers in other fields view evolution as a concept to
describe gradual changes, as opposed to revolutionary changes in system
behavior (Fabian 1998), this perspective is not necessarily consistent with
the evidence of punctuated evolution. Whatever the points of view, all
evolutionary systems consist of a large number of agents whose
interactions give rise to complex system-wide behavior: micro-level
actions giving rise to macro-level patterns of behavior (Shelling 1978).
Network traffic flow is also an evolutionary system.

Consider for example, an urban road traffic network consisting of a
large number of road segments. Workday traffic on a segment of a highway
typically has the profile of the morning and evening rush hour peaks with
the intervening troughs for the rest of the day. However, it is quite unlikely
that the traffic pattern profile on a given day matches exactly with those
of previous or following workdays. Indeed, the stochasticity of traffic
patterns arises in part as a consequence of “non-collaborative™ trips taken
by commuters. Commuters are “aware” of other commuters’ plans to
travel only to the extent that they are going to share the limited resources
of time and road space with other unknown commuters. The commuters
do not collaborate or inform each other of their intended trips and schedules
and plan accordingly for their journeys. Commuters mostly follow a loose
schedule that they create from their day to day experiences of trips on the
roads. Thus, traffic is an aggregate of the multitudes of decisions executed
by commuters in a non-collaborative manner, giving rise to traffic patterns
despite master plans intended to regulate traffic on the roads. Can
information theory models help explain the traffic patterns resulting from
actions of distributed agents? Do biological and information theory models
help in understanding concepts such as organizational order and
adaptation? Is such a metaphor for the life-like processes a good
explanation of traffic flow networks?
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The appeal of biological models is that although they are somewhat
imprecise and fuzzy, they provide a powerfu! explanatory framework for
dealing with systems consisting of independent but interacting agents
that change behavior to suit the dynamics of the environment. A model
based on these concepts could provide us with some insight into network
traffic flows and assist in the development of tools to assist ITS systems
and improve the traffic flows in the network. For example, suppose that
we know about a specific property that is beneficial to a population of
agents. Then, at least in theory, an abstract landscape defined in terms of
this specific property can be constructed and the dynamics of this property
observed as the population adapts to and modifies the changing landscape.
In evolutionary biology such landscapes are defined by survival fitness.
In the analytical model described in this paper, we use the ease of flow of
traffic on the network as a fitness property to construct abstract traffic
flow landscapes, similar to the N-K model fitness landscapes proposed by
Kauffman (1993).

Some important differences between the analytical model presented
here and the classic N-K model are important to note. The N-X model
describes interactions among agents in terms of boolean functions and
relies on autonomous boolean networks for emergence of organization.
Here we used an information theoretic approach to compute the ability of
networks to display organization and to show how such a methed can be
utilized by ITS to adapt to changes in network flows, Additionally, we
explain how ITS related technclogies can help maintain an overall good
fitness of traffic networks for the benefit of both the users and the traffic
managers.

This should not be seen as a fully developed alternative to classic
approaches to traffic forecasting in the traditional planning literature but
rather a complexity approach supplement that has proved helpful in other
settings {economics, institutional analysis, demography, etc.) and may
prove of interest in the systems approach in transportation modeling.

BACKGROUND

An urban region’s road network consists of many types of roads —
highways, major and minor roads, arterials and connecting roads. For a
traffic fitness landscape only those roads and links that are referred to as
primary and secondary roads/links as described in the TIGER/Line™files
Census Feature Class Codes (1992) are included. Links are segments on
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highways, major roads and arterials. Segments are characterized by the
levels of service (LOS) (Highway Capacity Manual 1985) which vary
depending on the traffic conditions on these segments. According to the
Special Report 209 of the Highway Capacity Manual, “the concept of
levels of service is defined as a qualitative measure describing operational
conditions within a traffic stream, and their perception by motorists and/
or passengers. A level-of-service (LOS) definition generally describes these
conditions in terms of such factors as speed and travel time, freedom of
maneuver, traffic interruptions, comfort and convenience, and safety”
(Transportation Research Board 1985: 1-3).

FITNESS CRITERIA FOR TRAFFIC FLOWS

If we assign a numerical value to each LOS, then in theory, we could use
these values as a fitness measure of each segment. Unlike the concept of
fitness in biology associated with survivability of a species, the fitness in
the traffic flow model refers to the idea of relative ease (high fitness) or
difficulty (lower fitness) of traffic on segments of roads in transportation
network. One can use the LOS concept to represent traffic flow conditions
at any time over an entire road transport network. To quantify the
qualitative concept of levels of service we suggest a very simple method
in Appendix A based on fractals.

NETWORK TRAFFIC FLOW LANDSCAPES

The word “Jandscapes” has topological connotations. Even though the
word evokes different images to different people, certain properties are
common to many landscapes. For instance, landscapes have morphology
such as multiple peaks (either sharp or gentle) and troughs and connecting
ridges. The topology of a region makes it clear that to reach point ‘P’ on
one of the peaks from point ‘@’ on another peak involves finding the best
possible route between these two points, avoiding regions of valleys.
Alternately, one may want to avoid the peaks and move between valley
regions. The landscape image suggests more than one peak that may satisfy
a given set of criteria and that not all peaks and valleys are reachable
easily. Thus, one may envision assigning a fitness value to criterion or
criteria set and then creating a visual image with peaks for good fitness
values and vatleys for bad fitness. How does one use the idea of fitness to
create traffic network landscape?

A network of ‘A" segments with ‘L' number of LOS has L" possible
configurations. With six LOS (A through F), we have 6" possible confi-
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gurations for N segment network. Each configuration is just one LOS
different than its neighboering configurations, D = N¥(L-1) configurations,
where D is the number of neighbors. For example, for N = 3 segments
and L = 2 108, then number of configurations is L¥= 8 or 000,001,010,
100,101,111. This can be represented as an eight vertices cube where
each vertex has N*(L — 1) = 3 neighbors and each vertex represents one
of the eight distinct configurations.

We associate each LOS of a segment with a computed fitness value.
Note that the LOS of one segment may affect the LOS of its neighboring
segments, We suggest an analytical expression to take these interactions
into account. The number of such interacting segments is the interaction
parameter, represented by an integer ‘K’. For simplicity assume that the
fitness vatues of each segment are additive. Then, a configuration where
all segments of the network have LOS ‘A’, has the highest fitness value
(free flow traffic) of ‘Alpha’. At the other end is a configuration where
every segment has a LOS of ‘F° with the lowest fitness value (traffic jams
on all segments) of ‘Omega.’ Usually, the network with ‘N’ segments
will be in one of the L configurations with a value of fitness that is less
than ‘Alpha’ and more than ‘Omega’. But, the overall fitness of the
network is not a simple additive process, since the traffic on each segment
is affected by other segments, and more by near segments (nearest neighbor
or contiguous) than far segments. Hence, each segment’s fitness is a
function of the fitness of neighboring segments. If there are ‘K” such
neighbors that affect the fitness of any segment, the value of ‘K’ can be
between zero and ‘N — 1°. When K = 0, each segment has traffic flows
that are independent of all other segments. On the other hand, when
K =N -1, each segment’s traffic flow is affected by the traffic flows on
all other segments.

Description of traffic networks in terms of L” configuration is
analogous to a system with L" states. A truly random system would show
ergodic behavior such that the probability of such a system being in any
one of these states is the same. But are traffic flows truly random? Probably
they are not. Since traffic systems show patterns at the macro level, we
need to assess the degree to which these patterns are constant or the degree
to which they evolve and organize into new patterns that are mostly
beneficial to participating agents. We can illustrate the development of
the analytical model by a simple example, almost a cartoon of a real life
network.
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ANALYTICAL MODEL OF TRAFFIC FLOW LANDSCAPE

Consider an urban road network of ¥ segments. The segments can be
either sections between mile stones or distances between consecutive
traffic signals or any other consistently defined measure across the
network. The traffic flow levels on each segment are determined in terms
of the LoS. Thus each segment can have ‘A’ through “F” levels of service
with LOS of “A” for free flow (+1.0) and LOs of ‘F” for no flow (0.0). At
any instant a set of segments with specific flow levels constitutes a
configuration of the entire road network among all possible configurations.
For ‘N’ segments with ‘L’ flow levels, the number of possible configu-
rations is ", For two types of flows (identified by A and F) the total
number of possible configurations of segment flows is 2. Let ‘K’ refer to
number of segments interacting with each other. Next we explain the
road configurations for different values of *K”,

1. K=0Case

When ‘K’ is assumed to be zero, each segment contributes to the overall
fitness independent of all other segments. The entire network configuration
may be represented as a combination of +1.0 and 0.0s. Thus, two extreme
states that one can find for the N segment network are trivial. One of
these states has all the segments blocked thus the network segments are
represented as the following vector:

(F. R, FK L Fy) (1)
and the total fitness M o is given by:
N
M, =3 f(F£)=00 )
i=1

The other state has all the segments in the free flow condition and may be
represented as the following vector:

(A, 4, A, ..., 4y) (3)
and the total fitness M,, for this state is given by:
v
Mg=§f(Af)=+N ()

Every other state has a total fitness contribution that is between 0.0
and N.
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A physical network of N segments, each of which can have any one
of L levels of service has LY distinct configurations. Since each of these
configurations are distinct, they can be represented by a hypercube whose
dimensions are determined by N*(L — 1). Again as shown in the example
of N=3 and L = 2 we have & distinct configurations and they can be
represented as vertices if a N*(L — 1) = 3 dimensional cube. For N = 4
segments and L = 2, the total distinct configurations are V=22 16,
which can be represented as 16 vertices on a N*(L - 1) = 4 dimensional
cube. One can prove with induction that in general, for N segments and
L levels of service, there LY distinct configurations which can be
represented as vertices of a N*(L — 1) dimensional cube.

Table 1 shows each configuration and its total fitness contribution. It
is clear from the fitness values that there are multiple configurations with
the same fitness value. Configurations 2, 3, 5 and 9 all have fitness of
1/4, while configurations 8, 12, 14 and 15 have fitness of 3/4. Six
configurations have a fitness of 1/2 (Configurations 4, 6, 7, 10, 11 and
13). If we assign probabilities to each of these fitness values, then it is
clear that the configuration with fitness value of 1/2 has a higher probability
of occurrence. Intuitively, a configuration with all blocked segments also
has a very small probability as does the configuration with all segments

TABLE 1. Configuration vs. fitness

Configuration Fitness value Avg, Fitness
K=0
I =FFFF (.0,0,0 0
2=FFFA 0,0,0,1 Y4
3=FFAF 0,0,1,0 Y
4 =FFAA 0,0,1,1 Y2
5=FAFF 0,1,0,0 A
6=FAFA 0,1,0,1 Y4
7T=FAAF 0,1,1,0 )
8=FAAA 0,1,1,1 Y4
9=AFFF 1,0,0,0 L4
i0=AFFA 1,0,0,1 2
11=AFAF 1,0,1,0 Y2
12=AFAA 1,0,1,1 %
13=AAFF 1,1,0,0 4
14 =AAFA 1,1,0,1 %
I5=AAAF 1,1,1,0 £

16=AAAA L1,1,1 1




26 Jurnal Ekonomi Malaysia 41

in a free flow situation. A very simple coding scheme gives quite a bit of
information on the condition of a traffic network. This schema can be
extended to a greater number of LOS to achieve a more realistic model of
traffic flow conditions.

2. K=N-1

Consider the case when each segment interacts with all the other segments
of the network. Since, we do not know yet how each segment affects the
other segments, we assume that the complex interactions are multiplicative
in nature, that is if segments have high fitness values, and then the result
of interaction would be a high fitness contribution value, On the other
hand if one or more segments have lower fitness values, then the result of
the interactions accordingly reflect a low fitness contribution value.

Another way to represent the interactions is to use a modified Tanner
function (Tanner 1961; Paelinck and Klassen 1979),

K+1
”(ﬂ)= 27(f ) ((dr;f_l)xe"P(‘aXdﬁ )) G
= '
where, ‘0’ is a proportionality constant, ‘dy is the distance (steps) between
segment /" and segment 7, T(f) is the fitness of segment 7, n(f;) is
the fitness of segment *i* and m( ]}’) is the computed fitness of segment
‘I’ as a result of the ‘k+1’ interactions between segment ‘i and other
segments.
Next, consider a set of configurations, each with 4 segments as before.
But now, we represent the individual fitness values as random numbers
between 0 and + 1. Then the total fitness of a configuration M, is

M, =3 (5) ©

where ‘g’ is a configuration, () is the fitness potential of a segment ‘i’
calculated using equation (5)

Once more, the fitness landscape is constructed as an N*(L - 1)
dimensional abstract hypercube where each vertex represents a
configuration with a fitness value that is a contribution from the segments
of that configuration. Although the fitness landscape is bounded from
above and below by 0 and N, it is now much more rugged and has multiple
peaks interspersed with deep valleys. For a simple network of N =4 and
L =2 (near free flow and near total blockage) we obtain a hypercube with
2% = 16 configurations represented by its vertices. Each configuration on



Exploring an Evolutionary Traffic Flow Landscape 27

(1011

1=0000
Z - 2=0001

[ 3=0010
4=0011
5=0100
6=0101
7=0110
8=0111
9=1000
10=1001
‘ 11=1010
Giig 12=1011
13=1100
14=1101
15=1110

Y 109 X 16=1111

(1001)

1080

FIGURE 3. Hypercube representation of genotypes for genes N

a vertex has a fitness value that is either a peak or a valley depending on
the result of interactions among the four segments of each configuration.
Every vertex has a configuration that has ‘D’ other neighboring vertices
with their own configurations and all of these differ from each other in
one LOS of a segment. Accordingly, the total fitness also differs for each
vertex (see figure 3).

The two extreme cases of K =0 and K = N — 1 show how the fitness
landscape can change from a one maximum and one minimum fitness
landscape to a multiple peak rugged landscape (Figure 4.) Note that the
landscape for the K = N — 1 case was generated using random values
between 0.0 and 1.0 for fitness of each segment, and the interactions
among the segments were thought to be of a multiplicative type. The
configurations 4, 5 and 8 have a higher fitness than the rest. The overall
fitness level becomes smaller as the number of interactions increases from
K =0to K = 3. This is due to the conflicting nature of interactions among
the segments and results in reduced fitness maxima.

As noted earlier, fitness level is expressed between O and 1 (real
number). When there is interaction between neighboring segments
represented as multiplicative in nature, the result will be less. Consider
two neighboring segments. If fitness of one segment is 0.5 and fitness of
its neighbor is also 0.5 and if they are independent then total fitness would
be 1.5 + 0.5 = 1, however, if the interaction is, say multiplicative in nature
then, total fitness will be 0.5 x 0.5 = 0.23. Thus when the entities are not
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independent of each other, fitness vatues fall as K increases. Similar results
would be obtained using Tanner function or radial function or any other
interaction function where the influence of one entity over the other
decreases with distance. ‘

In general, as the value of K changes the fitness landscape also changes
— from a single maximum/single minimum fitness landscape to a rugged
multiple maximum/multiple minimum fitness landscape whose maxima
and minima have reduced fitness values. To create a fitness landscape
for the entire network, we use a random fitness function or some other
function that reflects the general traffic conditions. In the later case the
function could be a weighted combination of a number of traffic properties,
such as peak flow times, numbers, density of the traffic, speed limits on
the segments or any other relevant property of the traffic on the road
network.

The specification of the traffic flow fitness landscape model is
complete when the assignment of the fitness vectors for all the segments
is done. The traffic flow landscape is represented as a hypercube in an
N*(L — 1) dimensional space for ‘L’ LOS traffic flow condition. Each of
the configurations at the vertex is one LOS different from its ‘0" neighbors
and accordingly, its fitness is slightly different than the rest of its ‘D’
neighbors. _

Now it is possible to estimate the overall fitness of the road network
for all configurations using Equation (6) as follows:

0.08

Fitness

0.08

0.04

c.02

2 3 4 5 6 7 8 9 10 11 12 13 14 15 1%

FIGURE 4. Fitness landscape, N=4, K=3,L=2
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1 &
r=Lsum, @
=

where M, is the fitness of configuration g’ Equation (7) serves as the
general fitness index of road networks.

EXPLORING THE TRAFFIC FLOW LANDSCAPE

Since the traffic flows on roads change dynamically, they do not lend
themselves easily to modeling. One cannot associate a single equilibrium
point at which the traffic flows settle down into a regular pattern. Instead,
the traffic flows follow multi-equilibria metastable behavior, jumping
from one configuration gx to the next configuration gy on the fitness
landscape hypercube. The new configuration gy may or may not be in the
immediate neighborhood of gx. The process of moving from this
configuration to the next continues as the flow dynamics change on various
segments. The movement over the fitness landscapes may not always
result in-a better fitness configuration. Consider again an N = 3 segment,
L = 2 L0s network, there are total of =% configurations, each distinct
configuration when represented as a vertex of a 3 dimensional cube, has
D = L*(N — 1) = 3 neighbors. Thus for a vertex and its 3 neighbors,
the probability that its fitness is better than the three neighbors is
1/(D + 1) = Y. Hence, the probability that g _has a better fitness value
than its D neighbors is given by:

1
p(g,r)=—-—D+1 (8)

The higher fitness value of configuration g, makes it alocally optimal
configuration among its neighbors. For a landscape consisting of v
configurations, the total number of such local optima is given by:

LN
E:= c))
D+1

A large number of locally optimal configurations for a traffic flow
landscape exist. The local optima are the multiple equilibria that are
scattered all over the traffic fitness landscape.
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ATTRACTORS AND ATTRACTOR BASIN

Next, we consider a four line sub-network of road segments that are
adjacent to each other such that one segment’s flows go to the next segment
N =4 segments, (‘a’, ‘b’, ‘¢, ‘dyand L =2 LoS and 0 <= K <=3
interactions. We rank the 16 possible configurations according to their
fitness values. If we assume that these segments are such that, during a
time period ‘¢", the traffic on segment ‘a’ moves on to segment *b” and so
on, we can represent the current traffic conditions on the four segments
with ‘0101.” Then, as the traffic moves in one time period, the flow
conditions on the successor configuration could be such that the resulting
configurations are one or more, but less than N, LOS different from the
neighbor configurations.

For a network consisting of a large number of segments, the successor
configuration could vary from being one LOS different from its neighbor
to N LOS different. If the successor configuration is the same from one
instant to another or if the successor configurations change back into the
original configuration then the original configuration becomes the
attractor, In other words, if a set of different configurations corresponding
to small scale perturbations in the flows on segments have the same
successor configuration, then the members of the set form the so-called
attractor basin and the successor configuration may be designated as the
attractor configuration or meta stable equilibrium configuration. On the
other hand, if the successor configurations are all wildly different it is an
indication that the traffic flow patterns are changing chaotically and the
network has become unstable.

SEARCH FOR LOCAL OPTIMA

If we could construct a traffic flow landscape at a given instant, then, in
theory, it would be possible to estimate the time needed to reach an optimal
solution. Suppose that a traffic landscape has been constructed and
currently the entire network is represented as a configuration g, in this
landscape. For a D = N*(L — 1) dimensional hypercube, a configuration
at a vertex is at least one LOS different than its "D’ other neighbors. If we
start at a worst fitness configuration, then moving to any of its neighboring
‘D’ vertices would lead us to a configuration that has better fitness than
the previous one. Since the total number of configurations is L, the rank
order of the new configuration is between 2 and L. If we continue to
move randomly to a vertex that has better fitness than the previous one,
then every such move makes the new configuration halfway closer to the
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remaining configurations. As the improvement continues, the process
slows down such that for every such move the time to search for a fitter
neighbor doubles. For example, using the fitness values mentioned in
Table 1, if we start at the worst fitness configuration (0000), then there is
a 69% chance that the new configuration will have fitness of ¥2 or more
and only 25% chance that the new configuration has fitness of Y. In the
later case, for the next step, there are 11 configurations that have fitness
values better than the current one. Thus chance of fitness value of Y215 6
in 11, while that being % or more is 5 in 11. Suppose, now the fitness
value is 2. Then for the next step, only 5 configurations have fitness
values that are more than Y. And thus, chance of fitness value being 3 is
80%. If the fitness value becomes 34 then in the next step, the fitness
value of 1 is achieved. Thus for 16 configurations with fitness levels
between O and 1, starting at the configurations with worst fitness (0}, it
takes 4 steps to reach the fitness level of 1.

Another way to look at the ranked fitness landscape starting from the
worst fitness vertex g,, is similar to travelling down a tree whose root is
the current vertex and at each level of the tree, each node (the new
configuration) branches to ‘D’ other configurations which are 1 LOS
different and accordingly have a different fitness level {See Figure 5).
Remember, the tree should read as ordered tree and then mapping from
ordered tree Lo binary tree is a standard operation carried out in computer
science. Typically, for an ordered tree, for a node N, left child becomes

FIGURE 5. Partial fitness tree
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left branch in the binary tree and the right child becomes right branch and
then on to next level.

At the start of a given time period, we can construct a configuration
tree that has the root configuration corresponding to the current traffic
flows on the segments. Next we search randomly for a better fitness
configuration on one of the *1’ branches. When a configuration is found,
we are at the new configuration and repeat the process until we reach a
local optimum. The total time or the number of levels becomes a measure
of the time needed to reach a locally optimal configuration. Alternately,
the configuration tree in Figure 6 can be changed into a binary tree
(Horowitz & Sahni 1985; Wilson 1988), such that at each nede or
configuration there are just two branches (see Figure 6.) Every time
we reach a node, we take the branch that leads to a better fitness
configuration until we reach a node that corresponds to a locally optimal
configuration.

Similarly, we could use the above techniques to analyze the impact
on the basis of increasing (decreasing) the total number of segments ‘N°
or changing the number of interactions per segment ‘K" to generate a
configuration tree and searching for a locally optimal configuration

FIGURE 6. Partial fitness binary
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that has an equal or better fitness than the configurations in its
neighborhood.

ORGANIZATION AND TRAFFIC FLOWS

Consider a system characterized by a large number of configurations. If
we have little or no informaticn about each of these configurations, then
the only meaningful thing we can express about these configurations is
that each configuration occurs with probability ‘p;” where ‘i’ ranges over
all possible configurations and that all such probabilities are equal. The
amount of information ‘P (Applebaum 1996; Suhir 1997) obtained from
this system in configuration ‘i’ is given by

I=-log,(p) (10)

The negative number is because the information is measured as a log
of probability. Since log of a number between 0 and 1 is —ve, to make the
sign of the information right (+ve), by definition one puts —ve sign in the
front of the log operation,

The expression for information [ in equation (10) can be converted
from logarithm of base 2 to logarithm of base 10 as follows:

log2 (I)

log, (10)

Since © is a constant, it will be ignored in the following discussion
as the log operation is assumed to be to the base 10.

Let us define a fitness function ‘¥’. The fitness function computes
fitness value M, (Equation 6) for each configuration, where * g tanges
over [1, LY. Note that ‘V’ is a one-to-many function, i.e. many
configurations have the same value of fitness. Let R;, (where j <= g),
denote the number of cenfigurations with the same fitness values. Since
the values that Rj can take a priori are unknown, R; can be expressed as a
random variable.

log,, (I) =0.30103xlog, (I)E @10g2.(1). (11)

R;=V(M,) (12)

where ‘j’ ranges over an interval [1, r] and as before ‘g’ ranges over
interval [1, L"]. Let P; denote the probability distribution associated
with R;. Then, the expectation £’ of such a distribution is defined as the
amount of uncertainty or information entropy ‘S’ in the system and is
given by:
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s=-ﬁpj xlog(P, ). (13)
i=1

If there is little or no information about the configurations and hence,
the associated fitness values, all that can be said about such a system is
that the number of configurations with similar values of fitness (R;) occur
with equal probability or R; has a uniform probability dlstrlbutlon Sucha
system is said to have maxnnum uncertainty or maximum entropy S,
(Jaynes 1979) and is characterized by disorder or disorganization. On the
other hand, a decrease in entropy of the system indicates increasing order
or organization in the system. How does increasing order or decreasing
disorder of a system occur?

Entropy “$” of a traffic network changes according to probability
distributions of a random variable ‘R’, which is determined by the fitness
‘f’ of each configuration, which in turn depend on the type of flows on
various segments. Hence, at any instant, the difference in *S_,,” and ‘S’
indicates the organization or degree of order in the network, Thus we
define an order parameter as

0=K(Sp ~5) (14)

where, ‘K’ is a proportionality constant and ‘O’ is the inherent organizing
capacity of the network.

The discussion of entropy and order follows from the treatment of
uncertainty in information theory. An information theoretic definition of
entropy ‘$’ of a system is a measure of uncertainty in a system {Applebaum
1996; Wilson 1969, 1973; Haynes et al. 1980; Haynes and Phillips 1981;
Haynes and Storbeck 1978). If we can reduce uncertainty in the
information content of a system then we will have reduced the entropy of
the system and accordingly its internal fitness will have improved (see
Equation 13), indicating organized traffic flow.

Consider a tiny network of N = 21 segments and L = 6 LOS; this
network has a staggeiingly high number, 6*' configurations. With no prior
knowledge of flow conditions, one must assume that each of these
configurations is equi-probable. But as soon as we gather traffic flow
information on even a small number of segments, the total number of
possible configurations decreases. Further, by defining a discrete random
variable that takes on values according to a fitness criteria (see Equation
12), we can find the probability distribution of such a random variable.
From this the entropy, order can be computed using Equations (10) through
(13). I a specific level of service on these segments is maintained, then
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every time we make an observation we are certain to find a specific level
of service. The probability of such segments is 1 and the information
content is zero, since log(1) = 0. As flow of traffic on a definite number
of segments becomes certain, the overall entropy of the network decteases,
indicating an increase in organization of the network. The surveillance
equipment to monitor traffic flows (Figure 2} on segments of a network
can provide information that would reduce uncertainty in traffic flows
and increase its fitness. Additionally, if TMC is able to maintain higher
flows on different segments, it modifies the probability distribution of
the flows, which in turn will modify fitness landscapes that are favorable
for efficient flows.

Alternately, measurement of flows on all segments gives the current
state of the network. In terms of the traffic flow landscape we now know
the vertex representing the state of the network. If this vertex corresponds
to a good fitness, then the TMC can maintain flows in the network
corresponding to that fitness level. Conversely, if a traffic network is on
a bad fitness vertex, then the TMC can adjust to improve the fitness of the
network and possibly evolve towards a region of better fitness on the
fitness landscape. The informaticn on network flows could be used as
input for 1Ts (Intelligent Traffic System) technologies such as ATMS
(Advanced Traffic Management System) and ATIS (Advanced Traveller
Information Service). In theory TMCs can be distributed across a traffic
flow network, each TMC monitors and manages a subset of segments of
the network and helps to maintain efficient network flows.

CONCLUSION AND FUTURE DIRECTIONS

Defining fitness vectors for traffic flows on a road network creates arugged
fitness landscape. For large values of N (the number of segments in a
network) with K segments (K < N) influencing each of N segments, a
very complex traffic flow fitness landscape is generated. For K =10, a
simple traffic flow landscape with a single global optimum is obtained.
Such a traffic network has all it’s segments independent of each other
and incidents affect only local flows.

As the value of K increases, more complex traffic flow landscapes
evolve. The other extreme occurs when X = N - 1 and each segment
influences the flow of traffic on all other segments. This type of landscape
has an infinite number of local optima and is very rugged. A fitness
landscape with K = N — 1 indicates a network in which an incident on any
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one of the segments affects flows across the entire network. It is a highly
unstable network.

The traffic flow landscape model depends primarily on the values of
‘N’ and ‘K’. A TMC-like system can influence flows on different segments
of a part of a network such that overall traffic flows across that part of the
network can be improved by reducing the level of uncertainty (entropy)
in the flows — or increasing organization or order in the network.

Note that we do not address issues of interfacing all these TMCs. In
fact; each T™MC is considered to be in operation independent of all the
others. How to coordinate TMCs will be addressed in reports on future
research. One of the features of the fitness landscape is its relative
independence of factors such as the fitness values and variations in-
parameter ‘L’ (Kauffman 1993). Since the traffic landscapes are mainty
dependent on values of ‘N and ‘K’, each TMC should be able to develop
processes to maintain a level of service on segments of a network that
would always give a better fitness configuration.

Appendix A:

Consider a road segment of length L and width W. Then the total area A
of the road segment is given by:

A = LP*WP or if we express w as fraction of | then
A = IP*(y *LP) or alternately it may be expressed as follows:

A=pL? (A1)
Equation (A1) can be re-written as:

Aal?? (A2)

where D = 1, the dimension of the road segment. Now consider a stream
of vehicles traveling on the segment of the road. Thus at any instant there
are a finite number of vehicles occupying a finite amount of space on a
section of the road.

Since, the vehicles on a road are discrete objects and occupy finite
and discrete amount of space, we can express the total area occupied by
the vehicles as follows:

a=n*ld*wd=n*ld*(5*ld), (A3)



Exploring an Evolutionary Traffic Flow Landscape 37

where a is the average area occupied by a vehicle of average length | and
average width w and & is a fractional measure for converting w into L
Equation (A3) may be expressed as:

a=n*§* ™ or aa(n*lz") (Ad)

Let us express the average value of vehicle length 1 in terms of the
length of section of the road, then equation (A4) can be written as:

a=n*§* ¥ or aa(n* (E*L)Zd) (AS)

From equations (A2) and (A4) the density of vehicle occupancy p
may be expressed as:

2d
n*(e* L) n* g x 2P
P T" or P T . (A6)
We can express the density function p by introducing a proporiionality
constant J in equation (A6) and get the following equation:

B ﬁ*R*EZd*LZd
- I

Taking logarithm on both sides of equation (A7) gives us the
following equation:

p =(conts.)* D), (A7)

log{p)=1log(conts.}+2(d — D)* log L. (A8)

Since, d = 1 we can get the following equation:

_log(p)= log(conts.)-l;z log(L)

d , A9
2*log (L) a9)
From equation (A8) we can get an expression for d as follows
Io = log(conts.
g =14 108(p) = log(conts.) (A10)

2%log(L)

The value of 4 varies between a minimum of zero (free flow) and
maximum = 1 (blocked segment) (see equation Al0). This computed
value of d can be used as a measure of the level of service for assigning
fitness values to sections of roads.
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Appendix B

KAUFFMAN’S NK MODEL

The NK model describes emergence of order in biological systems as a
result of a multitude of complex, random, epistatic (non-reciprocating
and inhibitory) binary interactions among the most fundamental agents
of self-organization, the genes. A population of genes (genotypes) evolves
over a fitness landscape (a type of hill-climbing) as it adapts to changes
in the environment. To get a better understanding of the Nk model, given
below are definitions of the biological terms. Gene is the basic unit of
inheritance. Genotype is a possible configuration or arrangement of genes,
Allele is a variation of a gene. Fitness is any “well defined property” and
the fitness landscape is a distribution of this property across an ensemble
(Kauffman 1993).

The Nk model of the evolutionary biologist Kauffman explains how
a variety of genotypes is able to adapt to so-called rugged fitness
landscapes of the environment in which these genotypes evolve, The ‘N’
stands for number of genes and ‘K’ stands for number of interactions any
single gene has with other genes. Each gene may have ‘L’ alleles. Alteles
are the variations in each gene that give rise to a physical trait such as eye
color. Each gene contributes to the overall fitness of a genotype. At the
same time each is influenced by ‘K’ genes that are either nearest neighbors
or are spatially separated from the gene. Thus the result of all the
interactions between ‘N° genes and ‘K’ influencing genes is a fitness
landscape with multiple peaks and valleys. The peaks are associated with
fitness values. Depending on the value of ‘K, the landscape varies from
a simple profile (K = 0) to one with a very complex profile (K =N - 1).
The former (K = 0) refers to an environment in which each gene is
independent of all its neighbors and the latter refers to a situation when
each gene is influenced by all the genes (K= N - 1) in a genotype.
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