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Eigenstructure-Based Angle for Detecting Outliers in Multivariate Data
(Sudut Berasaskan Struktur Eigen untuk Mengesan Titik Terpencil dalam Data Multivariat) 

NAZRINA AZIZ*

ABSTRACT

There are two main reasons that motivate people to detect outliers; the first is the researchers’ intention; see the example 
of Mr Haldum’s cases in Barnett and Lewis. The second is the effect of outliers on analyses. This article does not 
differentiate between the various justifications for outlier detection. The aim was to advise the analyst about observations 
that are isolated from the other observations in the data set. In this article, we introduce the eigenstructure based angle 
for outlier detection. This method is simple and effective in dealing with masking and swamping problems. The method 
proposed is illustrated and compared with Mahalanobis distance by using several data sets.
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ABSTRAK

Terdapat dua sebab utama yang mendorong orang ramai untuk mengesan titik terpencil, yang pertama adalah hasrat 
penyelidik; lihat contoh kes Encik Haldum di Barnett dan Lewis. Yang kedua adalah kesan titik terpencil ke atas analisis. 
Kertas ini tidak membezakan antara pelbagai justifikasi untuk mengesan titik terpencil. Tujuannya adalah untuk berkongsi 
dengan penganalisis mengenai cerapan yang terpencil daripada cerapan lain dalam set data. Dalam kertas ini, kami 
memperkenalkan sudut berasaskan struktur eigen untuk mengesan titik terpencil. Kaedah ini adalah mudah dan berkesan 
dalam berurusan dengan masalah litupan dan limpahan. Kaedah yang dicadangkan digambarkan dan dibandingkan 
dengan jarak Mahalanobis menggunakan beberapa set data.

Kata kunci: Limpahan; litupan; struktur eigen; sudut; titik terpencil 

INTRODUCTION

The identification of outliers is very important because of 
its effect to the analysis finding. If the statistical models 
are simply applied to the data sets containing outliers, 
one might get a misleading result. For example, in the 
regression analysis, one of the effects of the appearance 
of outliers is that they would control the regression line 
where the outliers will pull the regression line in their 
direction. In other words, it will influence the regression 
coefficient, which might calculate all the predicted values 
to wrong values. Many authors have discussed these issues 
critically (Chatterjee & Hadi 1988; Cook & Weisberg 1982; 
Rousseeuw & Leroy 1987).
 In the case of principle component analysis or 
factor analysis, the existence of outliers will deflate the 
correlation coefficient and this will automatically influence 
the factor score (Wulder 2002). The similar problem can 
also happen to an analysis of variance; the appearance of 
outliers might prove a large influence on the estimate of 
variance and this can cause a low probability of rejecting 
the hypothesis since it will affect the F statistics value 
(Quinn & Keough 2002). Outliers are also known as a 
special target of interest in the realistic environment. 
Hodge (2004) listed a few applications that implemented 
outlier detection. For example, in the monitoring activity, 
one can detect mobile phone deception by monitoring 

phone activity or suspicious trades in the equity market, 
while in the loan application processing, one can identify 
a potentially problematic customer.
 There have been many methods developed for the 
identification of outliers. They can be classified into the 
univariate method and the multivariate method (Barnett 
& Lewis 1994; Hawkins 1980). The univariate method 
is performed independently on each variable, whereas 
the multivariate method investigates the relationship of 
several variables (Franklin et al. 2000). One cannot claim 
multivariable observations as outliers if each variable is 
considered independently. This makes the identification 
of outliers become more difficult in the higher dimension 
data.
 Some of the multivariate outlier detection methods 
have been modified from the univariate method, so 
that it can take into account a multivariable. Examples 
are the generalized distance with studentized residual 
(Siotani 1959), the ratio of generalized distance with all 
observations (Wilk 1963) and the W statistics for normality 
(Shapiro & Wilk 1965). Wilks statistics (Wilk 1963) is also 
widely used for identification of outliers. It is equivalent 
to using the Mahalanobis distance of the n sample points, 
from the sample mean (Caroni & Billor 2007). However, 
this method is subject both to the masking and swamping 
effect when a data set contains clustered outliers. 
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 The masking problem occurs when the appearance 
of one outlier covers the appearance of another outlier, 
whereas the swamping problem arises when the observation 
is identified as an outlier even if it is not (Hawkins et al. 
1984). This consideration makes it desirable to consider 
a robust method of identifying outliers such as minimum 
volume ellipsoide (MVE) estimators (Rousseeuw & von 
Zomeren 1990) and minimum covariance determinant 
(MCD) estimators by Rousseeuw and Driessen (1999). 
 Robust estimators have the desirable properties 
of high breakdown point and affine equivariant. The 
breakdown point is a percentage of outliers that can 
cause an estimator to take arbitrary large values (Hampel 
1971). Therefore, estimators with a large breakdown 
point are more robust. Another desirable property of an 
estimator is affine equivariant. If an estimator is affine 
equivariant, stretching or rotating the data will not affect 
the estimator. Nevertheless, it is noted that the multivariate 
robust measures suffer from computational complexity, 
i.e. the efficiency of algorithms as run time and memory 
requirement permit.
 Alternatively to robust approach, this study proposed 
a method for identification of outliers using eigenstructure 
based angle. The idea of using the eigenstructure based 
angle as a tool for identification of outliers is motivated 
by maximum eigen difference (MED). Given that

 MEDi = 

where  and  represent 

the euclidean norm.  is an indicator function and yik = 
(xi – )T vk. λ

(i) and v(i) is an eigenvalues and eigenvectors, 
respectively, calculated from covariance matrix of data set, 
X with p dimensions where the ith observation has been 
removed from it.
 The function of 1 –  is to let MEDi become 

zero if all  is less than corresponding λk where k = 1, 
2, …, p. This is because if xis are close to mean,  they 
should not be identified as outliers and their proportion 
with  for all k is not large if all observations xi are 
identically and independently distributed with normal 
distribution (Goa et al. 2005).
 This method utilizes the maximum eigenvalue and the 
corresponding eigenvector. It is noted that examination 
of the observations effect on the maximum eigenvalue is 
very significant. The reason is that outliers that lie in the 
direction close to the maximum eigenvalue or vice versa, 
will change the maximum eigenvalue (Goa et al. 2005). 
The maximum eigenvalue contains maximum variance, 
therefore, the outliers detected by the maximum eigenvalue 
have a greater effect on variance and they need extra 
attention.
 The main objective of this paper was to introduce 
the eigenstructure based angle for detecting outliers. The 

method is formulated in the next section. In the section 
that follows, some illustrative examples are given before 
we conclude.

THE ANGLE

Let XTX have the eigenvalues-eigenvectors pair (λ1, v1), 
(λ2, v2), …, (λp, vp), where X is an n × p observation matrix 
consisting of n observations for p variables. If ith row 
of matrix X is deleted, one can write it as X(i) where the 
subscript i in parentheses is read as ‘with observation i is 
removed from X’, i.e. the ith row of X is  then X(i) = 
XTX – xi . Let X(i) have the eigenvalues and eigenvectors 
pair (λ1(i), v1(i)), (λ2(i), v2(i)), …, (λp(i), vp(i)). Now, consider the 
relationship between eigenstructure as follows: 

The relationship of eigenvalues λj and λj(i) is given by 

 λj(i) = 

where lij = (xi – )Tvj;

 The relationship between eigenvectors of vj and vj(i) is 
obtained based on the observation matrix X given by Goa 
et al. (2005) as follows: 

 One can develop the angle between vj and vj(i) (Mertens 
1998). If th is an outlier, therefore vj will change when 
ith observation is deleted from the sample data matrix, 
X. Let θj(i) be the angle between the jth eigenvectors of 
S for the given data X and the j(i)th eigenvectors when 
the ith observation is deleted in X (i.e., X(i)), then one 
has the formulae of θj(i) by Wang and Nyquist (1991) 

as cos(θj(i)) =  or it can be re-written as a 

function of eigenvalues and eigenvectors by θj(i) = cos-1

 where j = 1, 2, …, p; i = 1, 2, …, n. lij is 

the principal component scores of the omitted observation 
in the principal component decomposition of the complete 
data X and 
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 The vector angle is defined as the angle between 0 and 
180% that satisfies the relationship  cos θj(i) 

where  refers to the vector length. If the m observations 
are deleted from X, therefore: 

(1)

where vj(I) = v j +    

SIvj(λk – λj)–1vk and ljI =  is the mean of principal 

component score ljim, im ∈ I. Note that vj(I), ljI and ljim 

 are given by Wang and Liski (1993). 
 Supposing that one only deletes ith observation and 
considers the maximum eigenvalue, replacing j = 1 in (1) 
leads to 

  (2)

 Next, one can apply the angle, θ1(i) to identify the 
outlier in the data set; note that there are a few criteria that 
will control θj(i) value: 

First, consider λj ≥ λj(i) and λj(i) ≥ λk+1 where j, k = 1, 2, 
…, p. One finds that the θj(i) value is dominated by the 

first component of the denominator, i.e. . If one 

substitutes k = 1, into    hence it becomes 

. Notice that  and the 

 value is always small because the denominator 

is {  +(λk+1 – λ1)} usually large following λj(i) ≥ λk+1. As 
a consequence, if the numerator value of (2) is close to 
one, the denominator value will also be almost the same; 
note that the numerator value is always less than the 
denominator value. This follows that the θj(i) yields almost 
a zero degree angle. Another point is that the value of cos 
(θ1(i)) is always between -1 and 1. 

Next, if the principal component score is negative, θ1(i) will 
be large. This corresponds to a negative cosine yielding 
a large angle. 
 

 Therefore, the supposed potential outliers will be 
situated far away than the remaining observations in the 
data set if: 

θ1(i) for ith observation is larger than other observations 
following that { }(2) in the first component of ith 
observation is large; or θ1(i) for ith observation is smaller 
than other observations corresponding to { } in the first 
component of ith observation is small; 

The principal component score for ith observation is 
negative while others are positive. Note that the negative 
principal component score produces larger θ1(i) than 
the positive principal component score and vice versa. 
Observations in the data set have negative principle 
component scores, θ1(i) is larger if ith observation has 
large cos (θ1(i)). 

 The outliers can be displayed by the index plot {i, 
θ1(i)}. Based on the angle θ1(i), the following algorithm is 
proposed to find outliers:

Find S and S(i); Next find the eigenstructure of S and S(i) and 
choose the maximum eigenpair (v1, λ1) and respectively; 
Find the principal component score, lik for each p or 
compute lik = ; Compute θ1(i) and Identify the outlier 
from the index plot of {i, θ1(i)}. 

 The ith observation is considered as a potential outlier 
by θ1(i) if it is located at the top of the index plot {i, θ1(i)}.

EXAMPLES

In this section we examine the effectiveness of the angle. 
We consider three data sets from Rousseeuw and Leroy 
(1987). First we examined the performance of Mahalanobis 
distance to the three data sets. Figure 1 contains the index 
plot of Mahalanobis distance for the three data sets. 
The solid circle in Figure 1 denotes the observation that 
supposed to be outlier. As one can see, the Mahalanobis 
distance fails to detect all outliers known to be present in 
the three data sets. 
 Example 1 (Hawkins, Bradu and Kass Data). 
This artificial data set corresponds to a sample of 75 
observations in 3 dimensions. It provides a good example 
of the masking effect. The index plot for Mahalanobis 
distance in Figure 1 shows only observation 14 as outlier. 
It masks all the other outliers. The index plot for angle in 
Figure 2 manages to unmask all the 14 outliers. The results 
agree well with Atkinson (1994) Pena and Prieto (2001) 
and Rocke and Woodruff (1996).
 Example 2 (Stack Loss Data). This data set contains 
21 observations in 3 dimensions. It is about the operation 
of a plant for the oxidation of ammonia to nitric acid 
(Rousseeuw & Leroy 1987). According to Atkinson (1994), 
Hadi (1992) and Rousseeuw and von Zomeren (1990), 
observations  1, 2, 3 and 21 are outliers. The index plot for 
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Mahalanobis distance (Figure 1) fails to identify any of the 
many outliers known to be appear in this data set whereas 
the index plot of angle (Figure 2) claim observations 1, 2, 
3 and 21 as outliers. 
 Example 3 (Salinity Data). The salinity data set 
contains 28 measurements of water salinity and river 
discharge taken in North Carolina’s Pamlico Sound. 
Rousseeuw and Leroy (1987) mentioned observations 3, 5 
and 16 as outliers in the data set, whereas Pena and Prieto 
(2001) declares eight observations as the outliers in this 
data set. The index plot for angle in Figure 2 shows similar 
finding with Pena and Prieto (2001).

CONCLUSION

In this paper we have proposed eigenstructure based 
angle for detecting outliers. In the section of examples, 
we have seen that the Mahalanobis distance is not 
effective in detecting outliers as it suffers from masking 

and swamping problems. The eigenstructure based angle 
manages to identifying outliers. The angle procedure 
is simple and it can handle the masking and swamping 
problems.
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