A Rare Unilateral Variation in the Course of External and Internal Carotid Arteries

Satheesha BN, Srinivasa RS (✉), Swamy RS, Deepthinath R, Sudarshan S, Naveen K

Department of Anatomy, Melaka Manipal Medical College (Manipal Campus), Manipal University, Manipal, Karnataka State, 567104, India.

Abstract

Vascular variations in the neck region are not uncommon. Knowledge of incidence of morphological variations in the course and branching of the carotid arteries is important for radiological interpretation and surgical correction when they are symptomatic. Internal carotid artery (ICA) is known to show elongation in its extra cranial course. Previous studies have demonstrated the incidence and clinical symptoms of this morphological entity. However, the occurrence of elongation and looping of the external carotid artery (ECA) is seldom reported in the literature. During regular dissections, we came across a rare case of unilateral morphological variation of both ECA and ICA, in a male cadaver aged about 55 years. ICA presented a curved course with convexity directed posteriorly, at the level of the C2-C3 vertebrae. ECA presented a pronounced kinking or coiling, one inch below the level of the angle of the mandible. In addition, a linguo-facial trunk arising from the ECA also presented a pronounced kinking throughout its entire length.

Keywords: Internal carotid artery, external carotid artery, common carotid artery, kinking, coiling.

Correspondence:
Srinivasa Rao Sirisanagandla, Melaka Manipal Medical College (Manipal Campus), Manipal University, Manipal, Karnataka State, 567104, India. Tel: +91 820 2922644 Fax: +91-820-2571905 Email: seenaih.anat@gmail.com

Case Report

During regular laboratory dissections for medical undergraduates, we came across a rare unilateral morphological variation in the course and branches of the carotid arteries. It was observed in a formalin embalmed male cadaver of South Indian origin, aged approximately 55 years. The variation was observed on the left side of the neck and was unilateral. The common carotid artery divided into ECA and ICA, at the level of upper border of the thyroid cartilage. The proximal segment of the ICA presented a ‘posterior
Figure 1: Dissection of left side of the neck showing the variations of the carotid arteries. (KECA: kink of external carotid artery, CICA: curve of internal carotid artery, AC: ansa cervicalis, IJV: internal jugular vein, CCA: common carotid artery, HN: hypoglossal nerve, LFT: linguo-facial trunk, PBD: posterior belly of digastric, SSG: submandibular salivary gland, M: masseter, MA: maxillary artery, STA: superficial temporal artery)

Figure 2: Closer view of the variations of the carotid arteries. Internal jugular vein has been reflected. (KECA: kink of external carotid artery, CICA: curve of internal carotid artery, AC: ansa cervicalis, CCA: common carotid artery, HN: hypoglossal nerve, LFT: kink of linguo-facial trunk, LA: lingual artery, FA: facial artery, SSG: submandibular salivary gland, VN: vagus nerve)

curve’ and the convexity of the curve was directed posteriorly. This ‘posterior curve’ was situated at the level of C2-C3 vertebrae, immediately above the bifurcation of the CCA. The curve passed backwards, medial to the internal jugular vein and was crossed superficially by the vagus nerve (Fig. 1 and 2). From the point of bifurcation of CCA, the ECA ran upwards, anterior to the ICA. After a short distance, it showed a pronounced ‘kinking’ one inch below the level of the angle of the mandible (just below the posterior belly of the digastric muscle), then ascended behind the neck of the mandible and terminated into maxillary and superficial temporal arteries (Fig. 1).

Discussion

Classically, the carotid arterial system presents constant origin and course in the superior mediastinum and neck (1). When compared to CCA and ECA, ICA frequently shows variations in its course and forms coiling, looping and kinking or tortuosity (3). In 1951, Riser et al (7) have demonstrated the association between the carotid kinking and cerebrovascular insufficiency. Variations of ICA are could be due to developmental errors of aortic arteries (3) as looping and kinking is also reported to occur in the infants and fetuses (8). During the ICA development, usually major portions of segmental arteries that contribute to its formation disappear. Rarely they may persist and give rise to the anomalous branches of the ICA (9). Any developmental errors in the descent of heart and great vessels into superior mediastinum or failure of absorption of the third aortic arch or the upper intersegmental artery result in the elongation of the ICA (10).

Though the morphological variants of the course of the ICA are frequently defined by using different terms coiling, looping, kinking and S or C shaped elongation, tortuosity is appropriate term that can replaces others (11). Paulsen et al. (3) have classified the course of ICA into four types. According to them, if the deviation from the vertical axis is less than 15°, it is straight. If the deviation is greater than 15° and lesser than 70°, then it is curved. If the deviation lies between the 90° and 145°, then it is classified as coiled or kinked. If the deviation is 360°, it is looped. Further, they subdivided the curving into medial, lateral or ventrodorsal. In the same study, 65-70% of cases presented straight course, 25-28% of cases had curved course and 5-7% of cases had kinking or coiling of ICA. Unusual looping of the ICA in relation to an enlarged lymph node has been observed in a cadaver (12). Tortuosity of the ICA is rarely associated with clinical symptoms (10). The variants of the ICA may lead to degenerative alterations in the blood vessels with increase in age (3). The close relationship of the tortuous ICA with pharyngeal wall can cause difficulties in swallowing and speech and it may lead to difficulty to surgeons in this area (3). Individuals with tortuous ICA may present with focal neurological and hemispheric symptoms (3).

Though the elongation, coiling, looping or kinking of ICA is common, it is extremely rare to have these
variations with respect to the ECA (13). A cadaveric case of ECA forming S shaped loop has also been reported (13). The developmental arrest in the shifting of heart and large blood vessels into the superior mediastinum or shifting of origin from the aortic sac to third aortic arch may attribute to the formation of kinks in the ECA (10). Early diagnosis of kinking of the ECA is clinically important as it is frequently associated with stenosis, vasculitis, atropic dilation and arteriosclerosis (14).

Conclusion

Though posterior curvature of the ICA is not an uncommon finding, the occurrence of concurrent variations in the course of ICA and ECA reported here is seldom reported in the literature. Documentation of this rare variation may be of clinical importance while performing the surgical, imaging and invasive techniques involving the carotid vessels.

References


