Selected Research Issues in the Malaysian Agricultural Sector

(Isu-isu Penyelidikan Terpilih di dalam Sektor Pertanian Malaysia)

Jamal Othman
Yaghoob Jafari
School of Economics

Universiti Kebangsaan Malaysia

ABSTRACT

The agriculture sector remains a significant development factor in Malaysia even though its share to the nation's GDP has shrunk pronouncedly from some 30% in the 1970s to only 7% in 2013. Such statistics may not, however, reflect the true significance of the Malaysian agricultural economy. While the agricultural sector of the past decades was mainly associated with the production of raw commodities and primary processing activities, its current importance may be seen in terms of the sector's contribution to the total economy, via its inter-sectoral linkages and multi-functional roles. This paper highlights a number of issues that have bearings on the future roles of the agricultural economy in Malaysia. These include the emerging notion of agricultural multi-functionality, efficient allocation of land to various agricultural sub-sectors, deforestation and oil palm expansion, shortages of domestic labor, food-fuel dilemma, and extensive use of agrochemicals. Policy implications and/or suggestions for future research are deliberated for each issue.

Keywords: Malaysian agricultural economy; Malaysian agricultural issues; multi-roles of agriculture; sustainable agricultural development

INTRODUCTION

The Malaysian economy has undergone significant structural shifts over the years - from a simple farm-based economy at the outset of the nation’s independence, to manufacturing industries through the 1980s and 1990s, and to the services sectors in recent decades. The share of the agricultural sector to the nation’s GDP shrunk pronouncedly from 34% in 1970, 20% in 1980 to 7.2% in 2013. Nonetheless, as this paper argues, such statistics may not reflect the true significance of the Malaysian agricultural sector. Contemporary agriculture may be viewed from the broader perspectives of the sector's contribution to the total economy, via its inter-sectoral linkages and multi-functional roles, including its role in sustaining the vitality of rural areas and resources. Such roles of agriculture may not be explicitly captured by the standard national income accounting system.

At the global and national level, increasing awareness on environmental sustainability and green consumerism concerns have given rise to a number of unprecedented challenges, which further impinges upon the agricultural sector in Malaysia. These trends, without adequate adaptation strategies, may impede the ability of...
the sector in the long-run to continue contributing to the socio-economic development of the nation, particularly the rural economy.

Given the aforementioned background, this paper highlights some major development and issues affecting the Malaysian agricultural sector. These include the notion of agriculture as a multifunctional resource, efficient allocation of land resource, shortage of domestic labor, deforestation and climate change, food-energy dilemma, and extensive use of agrochemicals. Such multitude of issues without doubt signifies the momentous challenges facing contemporary agricultural policy makers and related institutions in Malaysia. Policy implications and/or suggestions for future research are deliberated for each issue.

THE ISSUES

AGRICULTURE AS A MULTIFUNCTIONAL RESOURCE

Agricultural multi-functionality is the notion that agriculture is not just about food production or any farm level produce. Neither it is any value adding activities within the traditional agricultural supply chain or put simply the agribusiness system. Rather, agriculture also produces jointly a host of other produce in the form of environmental and social externalities. This is illustrated in Figure 1. The figure depicts two broad economic functions of agriculture. First, the production of farm level produce including its associated value added products which are traded in the conventional markets. The use and consumption of such goods generate benefits in the form of direct use values to farmers, final consumers, and manufacturers. Direct use values may also be termed as marketed benefits. Traditionally, the marketed benefits of agriculture have been the focus of agricultural economics theory and policies.

The second broad function is the production of non-marketed benefits of agriculture or put simply agricultural externalities which accrue to society at large in the form of indirect or non-consumptive benefits. Specific examples of non-marketed benefits of agriculture include ecological functions such as flood mitigation (proven in the case of paddy growing areas), soil conservation, nurturing and purification of water resource, air pollution reduction, watershed protection, heat reduction, and biodiversity preservation. It also encompasses socio-cultural functions such as rural landscape formation, employment buffer, vitality of rural communities, preservation of traditional values and attributes, health and agro-recreational function, educational function, cultural and historical heritage, and food security. Such a systems view of the agricultural economy is indeed consistent with the general notion of sustainable development that calls for a balanced approach towards the environment, economy and socio-cultural properties.

Traditionally, agriculture has always been associated with farm level production. In addition, the measure of its efficiency and competitiveness including the analysis of comparative advantage between countries generally follow the same principles as applies to any industrial or marketed goods. This view, and for that matter the gist of the agricultural economics discipline has now undergone marked changes, given the advent of agricultural multi-functionality.

The idea of agricultural multi-functionality has significant influence on agricultural policy decisions in many countries, particularly in the EU, South Korea and Japan. A wide range of agricultural multi-functional elements has become key components of agricultural policies. For instance, the EU under the Common Agricultural Policies (CAP) established payment schemes that link the production of environmental goods and agriculture. These schemes provide economic incentives or payments to farmers for the provision of basic public goods under a sustainable farming program (European Commission 2014). Currently, many countries including Malaysia are deliberating the concept of payment for environmental services (PES) which signifies recognition to the economic importance of resource sustainability and services provided by the natural environment.

Undeniably, the elements of non-marketed benefits of agriculture have long been recognized in one form or another in the Malaysian development agenda, albeit somewhat segregated across the various line ministries and agencies. However, the multi-functionality notion, which reflects an integrative socio-biophysical system of agriculture to date, has not made significant

MARKETED BENEFITS

- Use and consumption of food, fiber, and raw materials
- Environmental Function
- Social Function
- Endowment Function
- Cultural Function
- Rural Vitality
- Food Security Function
- Biodiversity

PRODUCERS (farmers/Fishermen), manufacturers, and final consumers

SOCIETY AT LARGE

TOTAL BENEFITS OF AGRICULTURE

FIGURE 1. Systems Approach to Agriculture (Agricultural Multi-functionality)
Source: Jamal (2010)
Selected Research Issues in the Malaysian Agricultural Sector

Malaysia has accorded the agricultural sector as the third engine of economic growth in the Ninth Malaysia Plan (2006-2010). This follows the realization that the sector has been able to cushion effectively the impact of the 1997/98 Asian financial crisis. For instance, palm oil exports remained robust during the crises period. There was also evidence that the agricultural sector, notably the oil palm subsector was able to provide some 12,500 new employments at the peak of the crisis (Jamal 2007). Hence, protection and enhancement of the multiple roles of agriculture become increasingly evident.

A major challenge in implementing the concept of agricultural multi-functionality in Malaysia relates to institutional and legal issues. There exists a host of government agencies and departments that deal with agricultural (forestry, fisheries, animal farming), plantation and commodities, rural development, as well as the natural environment. Additionally, these agencies and their area of authority – agriculture, plantation and commodities, rural development, and environment, respectively, are under the purview of multiple ministries, namely the Ministry of Agriculture and Agro based Industries, Ministry of Plantation Industries and Commodities, Ministry of Rural and Regional Development, and the Ministry of Natural Resource and Environment. Such multitude of agencies naturally gives rise to the issue of policy inconsistency and inter-agency coordination.

It is important to note here that there exists currently an inter-agency coordinating mechanism within the Ministry of Agriculture and Agro-based Industry at the Federal, State and District levels. However, memberships of this framework are mainly statutory bodies and departments from the same ministry, while much of the coordination activities remain focused on the traditional production and agribusiness augmentation. Non-

Efficient Allocation of Available Land to Agricultural Subsectors

In the early years following the Independence of Malaysia (1957), the country launched an ambitious land development program to develop the rural-agricultural sector. It was the most crucial national development strategy for the fledging country. The program focused on conversion of large tracts of forest into agricultural lands, primarily the cultivation of industrial crops such as rubber and oil palm. However, over the years, the less environmentally sensitive forest areas, particularly those in Peninsular Malaysia has been substantially utilized. Figure 2 depicts the aggregate land supply into agriculture has been virtually on a standstill since the mid-1990s. This may be due to strict environment-forest policy enforcement in the country. It is also a reflection of the increasing global and domestic concerns on large-scale deforestation and climate change effects. In response to the scarcity of available land, Malaysia's agricultural policies focused on developing idle and marginal lands.

![Figure 2. Availability of Agricultural Land Area in Malaysia (1961-2012)](source: FAO-FAOSTAT, Official website)
There was an apparent structural change in the reallocation of land use within the agricultural sector. This mainly relates to oil palm, rubber, cocoa, and coconut (Table 1).

Additionally, Table 2 shows the changes in area under the cultivation of other important agricultural crops in Malaysia. The major shift in terms of absolute quantity of lands occurred mainly in the cultivation of fruits and vegetables. Even so, the absolute changes in the area under cultivation of these crops were minute compared to that of oil palm, rubber, cocoa, and coconut.

Figure 3 depicts the changes in the pattern of planted area for rubber, palm oil, cocoa, coconut, and paddy over the 1984 to 2012 period. The analysis excludes all other crops due to the small absolute changes in their cultivated area.

The figure indicates clearly oil palm area has been on a positive trajectory, while rubber, coconut and cocoa demonstrated a steady decline. Paddy area on the other hand has been rather stable. Technically, wetland paddy is cultivated in areas where oil palm and other perennial crops cannot be grown. Therefore, there was no

TABLE 1. Changes in Plantation Pattern of Main Agricultural Crops in Malaysia (thousand hectares)

<table>
<thead>
<tr>
<th>Crops</th>
<th>1987 Planted area</th>
<th>Share with respect to total agricultural land area (%)</th>
<th>2012 Planted area</th>
<th>Share with respect to total agricultural land area (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rubber</td>
<td>1881.3</td>
<td>29.4</td>
<td>1041.5</td>
<td>13.2</td>
</tr>
<tr>
<td>Oil palm</td>
<td>1640.2</td>
<td>25.7</td>
<td>5076.9</td>
<td>64.5</td>
</tr>
<tr>
<td>Coconut</td>
<td>320.6</td>
<td>5</td>
<td>112</td>
<td>1.4</td>
</tr>
<tr>
<td>Cocoa</td>
<td>370</td>
<td>5.8</td>
<td>21.7</td>
<td>0.28</td>
</tr>
<tr>
<td>Paddy</td>
<td>644.8</td>
<td>10.1</td>
<td>684.5</td>
<td>8.7</td>
</tr>
</tbody>
</table>

Source: Department of Statistics, Malaysia 1985-2012

TABLE 2. Land Use Changes for Other Agricultural Crops in Malaysia (hectare)

<table>
<thead>
<tr>
<th>Year</th>
<th>Pepper</th>
<th>Pineapple</th>
<th>Tobacco</th>
<th>Coffee</th>
<th>Tea</th>
<th>Sugarcane</th>
<th>Major Vegetables*</th>
<th>Major Fruits*</th>
<th>Grand Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>1990</td>
<td>11408</td>
<td>9076</td>
<td>10168</td>
<td>17795</td>
<td>3270</td>
<td>21574</td>
<td>30053</td>
<td>177505</td>
<td>280894</td>
</tr>
<tr>
<td>1995</td>
<td>9837</td>
<td>7895</td>
<td>10525</td>
<td>11525</td>
<td>2946</td>
<td>22050</td>
<td>35906</td>
<td>257654</td>
<td>358338</td>
</tr>
<tr>
<td>2000</td>
<td>13411</td>
<td>15720</td>
<td>15764</td>
<td>12260</td>
<td>3524</td>
<td>21380</td>
<td>39947</td>
<td>314918</td>
<td>436924</td>
</tr>
<tr>
<td>2005</td>
<td>12772</td>
<td>14900</td>
<td>8520</td>
<td>8557</td>
<td>1961</td>
<td>14235</td>
<td>35600</td>
<td>287455</td>
<td>384000</td>
</tr>
<tr>
<td>2008</td>
<td>13490</td>
<td>15586</td>
<td>6702</td>
<td>3538</td>
<td>1990</td>
<td>4439</td>
<td>39800</td>
<td>268650</td>
<td>354195</td>
</tr>
<tr>
<td>2009</td>
<td>13618</td>
<td>15791</td>
<td>7616</td>
<td>3426</td>
<td>1519</td>
<td>4500</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>2010</td>
<td>14174</td>
<td>15456</td>
<td>3698</td>
<td>5098</td>
<td>2459</td>
<td>4540</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>2011</td>
<td>14800</td>
<td>16000</td>
<td>4242</td>
<td>5149</td>
<td>2500</td>
<td>4600</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Source: Ministry of Plantation Industries and Commodities, Malaysia 2012

![Figure 3](image-url)
possibility for land substitution between paddy and other main agricultural crops except in the highlands. However, dry paddy cultivation in the highlands represents only about 10% of paddy plantation (Department of Statistics 2009). Since dry paddy cultivation did not significantly change during the investigation period, the increases in oil palm area were more likely at the expense of rubber, coconut and cocoa.

Figure 4 shows how oil palm cultivation expanded as a result of a decline in plantation areas for rubber, cocoa, and coconut in aggregate. This is particularly apparent in the period after the mid 1990s. The period prior to that demonstrated a marked uptrend for oil palm area while the other crops remained relatively stable, suggesting that oil palm augmentation was largely attributed to deforestation. The next section discusses this further. Note that the statistic for paddy is not included here due to the low probability of substitution between paddy and oil palm. Furthermore, the reason for the exclusion of other agricultural crops such as fruits, vegetables, pepper, tobacco, pineapple, sugarcane, tea and coffee in the analysis is that the overall absolute changes in their planted areas are far less relative to that of oil palm, rubber, cocoa, and coconut.

Given the facts that only a few industrial crops (oil palm and rubber) constitute the backbone of the Malaysian agricultural economy, it will be important to review the overall trajectory of land use in light of global uncertainties in supply and demand factors as well as inter-sectoral linkages within the overall economy. This has far-reaching consequences on the overall long-term sustainability of the Malaysian agriculture. It will be desirable to consider a macro portfolio management of agricultural land allocation in the country to minimize the repercussions of macro-systemic risks while taking into consideration the importance of food crops for food security and industrial crops for overall economic growth.

DEFORESTATION AND OIL PALM EXPANSION

Deforestation relates to the conversion of forest areas to alternative uses such as agricultural, urbanization and others. As illustrated in Figure 5, forest areas in Malaysia fell significantly over the years albeit with declining rates. Some analysts argued that the decline in forest areas was largely associated with oil palm expansion while others asserted that the oil palm expansion in Malaysia came from both forest areas and shifts in pre-existing crops (Casson 2000; Corley and Tinker 2003). Further, Koh and Wilcove (2008) asserted that specifically during the 1990 to 2005 period, 55-59% of oil palm expansion in Malaysia was due to deforestation, while some 41-

FIGURE 4. Land Use Under Cultivation of Oil Palm, and Other Crops Including Rubber, Cocoa and Coconut in Aggregate
Source: Department of Statistics, Malaysia 1985-2012

FIGURE 5. Depletion of Forest Area in Malaysia 1987-2012
Source: Based on Year Book Statistics of Malaysia for 1985-2012
45% was from conversion of pre-existing cropland such as rubber.

There are also arguments that the clearing of virgin tropical forests were primarily for the logging of timber (WWF 2005; Tan 2009). Consequently, the cleared area was allocated for oil palm cultivation. The many diverse arguments lead to the seemingly elusive question on whether or not oil palm plantation actually caused massive deforestation in Malaysia. We examined this by comparing the shifts in land use for pre-existing crops including rubber, coconut, and cocoa with changes in land area under oil palm plantation.

Figure 6 compares the changes in land taken away from pre-existing crops with the increase in land under oil palm cultivation. In the figure, the first column in each period represents a fall in pre-existing crop plantation while, the second column shows the increase in land use under oil palm plantation.

The total increase in oil palm cultivation is greater than the total decrease in cultivation of other crops in aggregate. This somewhat suggests that further expansion of oil palm has been fueled by other types of land supply. Since the other type of land use also experienced smaller decrease than the increase in oil palm plantation, it is highly likely that the oil palm plantation expansion occurs on deforested land. As indicated earlier by the second column in Table 3, the probable share of pre-existing crops in expansion of new land for oil palm cultivation deescalated while the share of forests and other land use sources expanded significantly. Over the 1990 to 1995 period, the marginal 2% increase in the cultivation of oil palm was likely to have originated from the other land sources because the fall in pre-existing crops were able to generate some 98% of the oil palm expansion area. In the subsequent periods, respectively, 44%, 66% and 73% of oil palm area likely originated from non-pre-existing crop land area. This trend signifies that land under pre-existing crops may no longer be responsive to any shifts in oil palm demand as they did before.

The preceding discussions suggest that future oil palm expansion might pose direct pressure on forest resources with wide implication on biodiversity and microclimate change effects, unless there is a clear policy shift, which emphasizes growth from value adding activities, particularly the high-end downstream industries.

SHORTAGE OF DOMESTIC AGRICULTURAL LABOR

One of the most debated issues facing the Malaysian agricultural sector is the shortages of domestic labor. While the contribution of agricultural employment (including livestock, forestry and fishing) declined very substantially from 26% of total employment in 1990 to 11.4% in 2011 (Tables 4 and 5), there was also a clear shift in terms of employment proportion within the various

TABLE 3. Changes in Share of Pre-Existing Crops (Rubber, Cocoa and Coconut) in Response to Increase in Oil Palm Area

<table>
<thead>
<tr>
<th>Time Period</th>
<th>Change in oil palm plantation*</th>
<th>Change in plantation of pre-existing crops(rubber, cocoa, coconut)*</th>
<th>Share of pre-existing crops (rubber, cocoa, coconut)</th>
<th>Share of other sources (including forestry area)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(A)</td>
<td>(B)</td>
<td>(C) = (\frac{B}{A})</td>
<td>(D) = 1 - C</td>
</tr>
<tr>
<td>1990-1995</td>
<td>453.8</td>
<td>-443.5</td>
<td>0.98</td>
<td>0.02</td>
</tr>
<tr>
<td>1995-2000</td>
<td>836.8</td>
<td>-467.5</td>
<td>0.56</td>
<td>0.44</td>
</tr>
<tr>
<td>2000-2005</td>
<td>674.6</td>
<td>-226.4</td>
<td>0.34</td>
<td>0.66</td>
</tr>
<tr>
<td>2005-2012</td>
<td>1025</td>
<td>-241</td>
<td>0.23</td>
<td>0.73</td>
</tr>
</tbody>
</table>

* Values are in thousands of hectares

Source: Calculated based on the Statistics published by the Department of Statistics, Malaysia 1985-2012
agricultural sub-sectors. Most notably the proportion of labor employed in the oil palm sub-sector increased remarkably, whereas the number of employment in other sub-sectors (rubber, cocoa, and other crops including pepper and tobacco) declined substantially (Ministry of Plantation Industries and Commodities 2010).

<table>
<thead>
<tr>
<th>Year</th>
<th>Agricultural Employment</th>
<th>Percentage with respect to total employment</th>
</tr>
</thead>
<tbody>
<tr>
<td>1990</td>
<td>1738.0</td>
<td>26</td>
</tr>
<tr>
<td>1995</td>
<td>1492.7</td>
<td>18.7</td>
</tr>
<tr>
<td>2000</td>
<td>1407.5</td>
<td>15.2</td>
</tr>
<tr>
<td>2005</td>
<td>1401.4</td>
<td>12.9</td>
</tr>
<tr>
<td>2006</td>
<td>1392.4</td>
<td>12.5</td>
</tr>
<tr>
<td>2007</td>
<td>1389.9</td>
<td>12.2</td>
</tr>
<tr>
<td>2008</td>
<td>1390.9</td>
<td>12</td>
</tr>
<tr>
<td>2009</td>
<td>1390.8</td>
<td>12.0</td>
</tr>
<tr>
<td>2010</td>
<td>1390.3</td>
<td>11.6</td>
</tr>
<tr>
<td>2011</td>
<td>1389.4</td>
<td>11.4</td>
</tr>
</tbody>
</table>

Source: Ministry of Plantation Industries and Commodities Malaysia (2012)

A grave concern is the increasing reliance of the agricultural sector particularly the oil palm sub-sector on foreign labor. The oil palm farm sub-sector is labor intensive with very low prospect for effective mechanization even in the very long run. Further, there is also little scope for domestic workers to be drawn into finding employment in this sector due to the relative structural unattractiveness, while rapid economic development and strengthening of domestic currencies in the labor-source countries, particularly Indonesia potentially affect labor supply in the intermediate to longer-run. Another related issue is the imposition of current minimum wage policy for domestic and foreign labor across economic sectors including oil palm and rubber sub-sectors.

In short, how labor supply uncertainties and the implementation of the minimum wage policy will affect Malaysian agricultural sustainability and competitiveness in the longer run is quite unknown empirically.

**FOOD-FUEL DILEMMA AND PALM OIL 'PRICE WAR'

Another daunting challenge in Malaysian agriculture is the increasing public interests on food security. The widely debated food-fuel dilemma across the globe in light of global climate change and renewable energy development issues is indeed very relevant to Malaysia. Malaysia is endowed with abundant supply of palm oil and thus the country has a comparative advantage in using palm oil as a renewable feedstock for the production of the relatively environment friendlier biodiesel. Technically, biodiesel is a product of a mix of fossil fuel (diesel) with either crude palm oil or processed palm oil. However, as the biofuel industry expands, both biodiesel and palm oil-based food products ultimately will be competing for the same crude palm oil (CPO) as intermediate input. As illustrated in Figure 7, CPO is produced from crushed fresh fruit bunches (FFBs) which is further processed to produce biodiesel, cosmetics and chemical products, and wide ranges of food products such as cooking and frying oil, margarine, food emulsifiers, and cocoa butter equivalent.

Given that Malaysia’s biodiesel industry is synonymous with palm oil, there are concerns that there will be increased competition in the use of the same palm oil input for the manufacture of biodiesel and the aforementioned final products including food. Should there be insufficient supply of feed stocks, and contingent on relative price changes, increases in demand for biodiesel may result in the expansion of oil palm cultivation. This might further aggravate environmental issues including loss of biodiversity, carbon emissions and micro climatic change. Therefore, the potential provision of economic incentives such as biofuel mandates and subsidies may have considerable impacts on related markets in Malaysia especially food products, which utilizes the same CPO intermediate...
input. Consequently, in the longer run this may lead to changes in the composition of agricultural outputs in related sub-sectors due to the links with primary input markets - land and labor resources.

Further, the Malaysian government also provides cooking oil (largely palm oil-based) subsidies (via the Cooking Oil Subsidy Scheme) to the tune of 37 percent (ad valorem) to benefit targeted low-income household groups (Jamal and Yaghoob 2011). In light of budgetary pressures, there have been calls for a review of the cooking oil subsidies. Such a move may have considerable impacts on domestic cooking oil prices and outputs. Studies have shown that domestic cooking oil market liberalization pose negative long-run impacts on domestic cooking oil prices and outputs, while the production of biofuel from palm oil may increase substantially (Jamal and Yaghoob 2011).

Another pertinent issue is associated with oil palm trade policies. The introduction of export tax on CPO products by Malaysia encourages the domestic downstream processing of oil palm products while discouraging the export of crude palm oil. However, in recent years there has been an important development in relation to Indonesia’s palm oil export policy. In 2012, Indonesia imposed new differential export tariffs on her exports of palm oil, which affected substantially Malaysia’s downstream industry, as well as exports. Media reports highlighted that the local palm oil industry lost some rm9 billion in export revenue due to the Indonesian policy (Ooi 2014). As Malaysia and Indonesia both contribute some 90 percent of the global supply of palm oil, and the fact that Malaysia has huge vested interest in related investments in Indonesia, incoherent trade policies between the two countries may effectively manifest into a “price war” with potential adverse welfare impacts especially to Malaysia.

Taking into consideration the wide range of aforementioned issues, it is crucial to review and appraise the impacts of pertinent policy responses affecting biodiesel development, cooking oil market liberalization, and trade policies vis-a-vis Indonesia. To what extent such policy shocks may affect the competitiveness of the Malaysian oil palm economy, welfare and the environment will be an important research challenge.

EXTENSIVE USE OF AGROCHEMICALS

The Malaysian farming sector is still dependent on agrochemicals including chemical fertilizers and pesticides. These agrochemicals while playing an important role in sustaining the needed yields and ensuring adequate profit levels to producers inevitably lead to increasing environmental damages (such as aquatic biodiversity) and food safety issues. In addition, the substantial agrochemical subsidies provided to the paddy production sub-sector render the use of such inputs inefficient. In the longer-run, it results in even more intensive use of chemical-based inputs as the natural soil base further erodes.

Mineral fertilizers constitute more than 90% of fertilizer consumption in Malaysia. Table 6 shows the upward trend of fertilizer use in the country for 2002, 2007 and 2008. Table 7 further depicts the decomposition of the total nutrient consumption for industrial crops where oil palm stands at 84 %, rubber 9%, rice 6%, while the remaining goes to coconut, sugarcane, cocoa and tobacco.

It is also important to note here that oil palm, as Malaysia’s most important industrial crop is notably potash (potassium) intensive. Technically, under-utilization of potash would lead to substantial decline in yield. The main issue with potash as a fertilizer element is the dependence of Malaysia on a few global players (producers and exporters) who possess sufficient market power in terms of price determination.

Similar to chemical fertilizers, the use of pesticides has also increased (Malaysian Crop Life and Public health association, 2008). The impact of pesticides on food safety in Malaysia is a growing concern (Economic Planning Unit 2004). Table 8 shows the value of pesticides consumed for crops vigilance in Malaysia for different years.
on good agricultural practices (sustainable agriculture) and food safety issues. There is a need for incentive shifting via the provision of appropriate economic incentives to stimulate the development of the domestic organic fertilizer industry for targeted sub-sectors. Again, to what extent these policy reviews may affect the competitiveness of Malaysian agricultural sector, including related factor markets, the environment, and national welfare will be an interesting research indulgence.

CONCLUSION

The purpose of this paper was to highlight some selected issues affecting the Malaysian agricultural sector. Firstly, we thought that the emerging notion of multi-functional agriculture, which considers agriculture and rural resources in totality, would be an important future policy agenda. Secondly, we espoused the importance of efficient allocation of scarce agricultural lands based on portfolio theory, taking into consideration the roles of both agro-industrial crops for overall economic growth and food crops in light of national food security needs, while minimizing macro-systemic risks that emanate from uncertainties in global factors. The third issue pertains to the dominance of the oil palm sub-sector in the Malaysian agricultural economy, while stressing the problem of unrelenting dependency on foreign labor as well as emerging issues that emanates from changes in Indonesia’s palm oil export policy. An important challenge to Malaysian agriculture also relates to the increasing public concerns on food security and the potential effects of the food-fuel dilemma. Finally, the implication of increased intensity in the use of agrochemicals including fertilizers and pesticides was also deliberated.

In short, Malaysian agriculture and rural socio-environmental resources are a symbiosis, having direct implications on agricultural sustainability and the vitality of rural areas. The sector is also increasingly associated with domestic food security and safety concerns as well as trade and global environmental issues. Studies are warranted to identify appropriate policy reviews or new interventions. Consequently, it is also important to quantify the impact of the relevant policy changes on socio economics and environmental variables, as well as the overall macro economy.

REFERENCES

Casson, A. 2000. The Hesitant Boom: Indonesia’s oil palm subsector in an area of economic crises and tropical...
change. CIFOR Program on the underlying Causes of Deforestation.
Department of Statistics Malaysia, various years (1985-2012). Year Book of Statistic.

Jamal Othman *
Yaghoob Jafari**
School of Economics
Faculty of Economics and Management
Universiti Kebangsaan Malaysia
43600 Bangi, Selangor D.E.
MALAYSIA

*Corresponding author; email: jortman@ukm.edu.my