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ABSTRACT 

The double sampling (DS) X  and variable sample size (VSS) X  charts are very effective to 
detect small and moderate shifts in the process mean. Both charts are usually investigated under 
the assumption of known process parameters. However, the process parameters are commonly 
estimated from an in-control Phase-I dataset because they are usually unknown in practice. 
Therefore, both cases of known and estimated process parameters for the DS X  and VSS X  
charts are considered in this paper. It is well known that the run length distribution of a control 
chart is highly skewed, especially when the process parameters are estimated and the process 
is in-control or slightly out-of-control. Interpretation based solely on a specific performance 
measure could be misleading. Thus, various performance measures need to be used to evaluate 
the properties of the control charts. Generally, the design of a control chart with estimated 
process parameters is proposed without comparing with other control charts. Accordingly, this 
paper focuses mainly on the comparison of the average run length (ARL), standard deviation of 
the run length (SDRL) and average sample size (ASS) between the DS X  and VSS X  charts 
with known and estimated process parameters. The ARL and SDRL results indicate that the DS 
X  chart outperforms the VSS X  chart for all ranges of shifts. However, the converse is true 

in terms of the ASS.

Keywords: double sampling (DS) X  chart; variable sample size (VSS) X  chart; average run 
length (ARL); standard deviation of the run length (SDRL); average sample size (ASS)

ABSTRAK 

Carta X  pensampelan berganda (DS) dan carta X  dengan saiz sampel yang berubah-ubah 
(VSS) adalah sangat berkesan untuk mengesan anjakan min proses yang kecil dan sederhana. 
Kedua-dua carta ini biasanya disiasat dengan andaian bahawa parameter-parameter proses adalah 
diketahui. Walau bagaimanapun, parameter-parameter proses biasanya dianggarkan daripada 
set data Fasa-I yang berada dalam kawalan kerana parameter-parameter proses biasanya tidak 
diketahui dalam amalan. Oleh hal yang demikian, kedua-dua kes dengan parameter-parameter 
proses yang diketahui dan dianggarkan bagi carta-carta X  DS dan X  VSS dipertimbangkan 
dalam makalah ini. Adalah diketahui bahawa taburan panjang larian bagi suatu carta kawalan 
adalah sangat terpencong, terutamanya apabila parameter-parameter proses dianggarkan dan 
proses berada dalam kawalan atau hanya sedikit yang berada di luar kawalan. Tafsiran yang 
semata-mata berdasarkan satu ukuran prestasi yang spesifik adalah mengelirukan. Justeru, 
pelbagai ukuran prestasi perlu digunakan untuk menilai sifat-sifat carta kawalan. Secara 
umumnya, reka bentuk carta kawalan berdasarkan penganggaran parameter proses dicadangkan 
tanpa perbandingan dengan carta-carta kawalan yang lain. Makalah ini bertujuan untuk 
membandingkan panjang larian purata (ARL), sisihan piawai panjang larian (SDRL) dan saiz 
sampel purata (ASS) antara carta-carta X  DS dan X  VSS berdasarkan parameter-parameter 
proses yang diketahui dan dianggarkan. Keputusan ARL dan SDRL menunjukkan bahawa carta 
X  DS adalah lebih baik daripada carta X  VSS bagi semua julat anjakan. Namun demikian, hal 
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yang sebaliknya adalah benar jika dikaji dari segi ASS.

Kata kunci: carta X  pensampelan berganda (DS); carta X  dengan saiz sampel yang berubah-
ubah (VSS); panjang larian purata (ARL); sisihan piawai panjang larian (SDRL); saiz sampel 
purata (ASS) 

1. Introduction 

Statistical Process Control (SPC) is an effective problem-solving technique to ameliorate 
process capability and attain process stability via the reduction of variability. Control chart is 
a very useful technique in many industries. In recent years, studies of adaptive control charts 
become more popular among researchers than that of the static control charts because the static 
control charts are less sensitive in responding to process changes. Adaptive control charts 
allow the charts’ parameters, which include the sample size, sampling interval and control 
limits, to vary at different states (Castagliola et al. 2013). Recent works that deal with adaptive 
charts, such as double sampling (DS), variable sample size (VSS), variable sampling interval 
(VSI) and variable sample size and sampling interval (VSSI) charts, can be found in Amiri 
et al. (2014), Costa and De Magalhães (2007), De Magalhães et al. (2009), Mahadik (2013) 
and Teoh et al. (2014). The DS X  and VSS X  charts are adaptive control charts that are 
sensitive for the detection of small to moderate mean shifts in the process. Since only one 
chart’s parameter, i.e the sample size, varies for these two charts, both the DS X  and VSS X  
charts are studied in this paper in order to make fair comparison.

In real-life applications, the process parameters are estimated from an in-control Phase-I 
dataset because they are normally unknown. The performance of the control chart with estimated 
process parameters is significantly different from that of the known-process-parameter case. 
Therefore, numerous researchers (Capizzi & Masarotto 2010; Khoo et al. 2013a; Mahmoud 
& Maravelakis 2010; Testik 2007) studied the impact of estimations of process parameters 
on a variety of control charts’ performances. Jensen et al. (2006) and Psarakis et al. (2014) 
provided thorough reviews on the recent developments of process parameters estimation on 
various types of control charts. The accuracy of the estimated process parameters determined 
from the Phase-I dataset is critical to ensure a favourable performance in the Phase-II process. 
Thus, some researchers (Castagliola et al. 2012; Maravelakis & Castagliola 2009; Teoh et al. 
2014; Zhang et al. 2011) recently implemented new and optimal charting parameters, specially 
designed for the control charts with estimated process parameters. Moreover, Dasgupta and 
Mandal (2008) applied the Bayesian approach to process parameter estimation and used it to 
obtain the optimal diagnosis interval for detecting the occurrence of assignable cause in the 
process.

The DS X  chart, which follows the idea of the double sampling plan, was presented by 
Daudin (1992) to overcome the setback of the Shewhart X  chart towards small process shifts. 
There are many literature focusing on the DS X  type charts for monitoring the process mean, 
such as those by Carot et al. (2002), Claro, et al. (2008) and Khoo et al. (2011). Torng et al. 
(2009) formulated an economic-statistical-design model to reduce the total cost of the DS X  
chart. They also applied the genetic algorithm to determine the chart’s optimal parameters. 
They claimed that the DS X  chart is favoured for enhancing the effectiveness of process 
monitoring without increasing the number of samples. Also, it maintains the simplicity of 
obtaining the X  chart’s statistic. The performance of the DS X  control chart under non-
normality was studied by Torng and Lee (2009). They showed that the DS X  chart is equally 
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competitive as the variable parameter (VP) X  chart and surpasses the Shewhart X  chart in 
terms of the efficiency in detecting small mean shifts. Costa and Machado (2011) used the 
Markov chain approach to analyse the performance of the VP X  and DS X  charts in the 
existence of correlation. While so much work focused on the DS type control chart with known 
process parameters, Khoo et al. (2013b) and Teoh et al. (2014) recently proposed the DS X  
chart with estimated process parameters. Khoo et al. (2013b) introduced three optimal design 
procedures of the ARL-based DS X  chart with estimated process parameters. Teoh et al. 
(2014) on the other hand, proposed a new optimal design procedure for minimising the out-of-
control median run length. 

Prabhu et al. (1993) and Costa (1994) used the Markov chain approach to evaluate the VSS 
X  chart. The VSS X  chart has a significant improvement for detecting small process shifts 
compared to the Shewhart X  chart (Prabhu et al. 1993). Costa (1994) claimed that the VSS 
X  chart has some advantages over the VSI X  chart, EWMA chart, CUSUM chart and the X  
chart with supplementary runs rules for some ranges of shifts. Park and Reynolds (1994) and 
Kooli and Limam (2011) formulated an economic design for minimising the expected cost per 
hour for the VSS X  and VSS np charts, respectively. They found that the VSS type control 
charts provide more cost savings compared to the static control charts. Because of the merits of 
the VSS properties, Wu (2011) examined the expected long-run cost per unit time for a three-
state monitoring system by applying the VSS control chart. Castagliola et al. (2013) discussed 
the VSS t control chart for observing the short runs process. For attribute control charts, Luo 
and Wu (2002) developed the optimal VSS np and VSI np charts for fraction nonconforming. 
For adaptive EWMA and CUSUM type charts, Zhang and Wu (2007) introduced the VSS 
weighted loss function CUSUM scheme to improve the detection of a broad domain of mean 
shifts and increasing variance shifts. To improve the efficiency of the EWMA control chart, 
Amiri et al. (2014) and Zhang and Song (2014) proposed a new VSS EWMA chart with the 
application of integer linear function and the VSS EWMA median chart, respectively. Note 
that all the aforementioned literature only considers the VSS type charts with known process 
parameters. Recently, Castagliola et al. (2012) extended Costa’s (1994) work by developing an 
optimal design of the VSS X  chart with estimated process parameter. 

To date, none of the existing literature compares the performances of different control 
charts with estimated process parameters. It is well known that the run length distribution of a 
control chart is highly skewed, especially when the process parameters are estimated (Jensen 
et al. 2006; Jones et al. 2004; Teoh et al. 2014). Therefore, various performance measures 
should be used to evaluate a control chart. Thus, this paper aims at providing comprehensive 
comparative studies based on various performance criteria, i.e. the average run length (ARL), 
standard deviation of the run length (SDRL) and average sample size (ASS) of the DS X  and 
VSS X  charts with estimated process parameters.

The structure for the remainder of the paper is as follows: Sections 2 and 3 deal with the 
DS X  and VSS X  charts, respectively, with their run length properties for both cases of 
known and estimated process parameters. Section 4 compares the DS X  and VSS X  charts 
based on the ARL, SDRL and ASS, for the known- and estimated-process-parameter cases. A 
conclusion is presented in Section 5.
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2. The DS X  Chart

Assume that the Phase-II observations, Y, of a quality characteristic are independent 

and identically distributed (iid) normal N µ0 ,σ 0
2( )  random variables, where µ0  and σ 0

2  
are the in-control mean and variance, respectively. By referring to Figure 1(a), the DS X  

chart is divided into distinct portions denoted by I1 = −L1,L1⎡⎣ ⎤⎦ , I2 = −L,−L1⎡⎣ )∪ L1,L( ⎤⎦ , 

I3 = −∞,−L( )∪ L,+∞( )  and I4 = −L2 ,L2⎡⎣ ⎤⎦ . Note that L1 > 0  is the warning limit in the first-

sample stage; while L ≥ L1  and L2 > 0  are the control limits in the first-sample and combined-
sample stages, respectively. 

The DS X  chart is implemented by determining the limits; L, L1 and L2. The construction 
of the control chart is then followed by taking a first sample of size n1 and then compute 

out the sample mean Y 1k = Y1k , j n1j=1

n1∑ . Here, Y1k , j , for j = 1,2,…,n1  represents the Phase-

II observations of the first sample. Then calculate Z1k = Y1k − µ0( ) n1⎡
⎣

⎤
⎦ σ 0 . The process is 

considered as in-control when Z1k ∈I1 ; while the process is considered as out-of-control when 

Z1k ∈I3 . Besides, the second sample of size n2 needs to be taken from the same population 

as that of the first sample when Z1k ∈I2 . This is followed by computing the second sample 

mean Y 2k = Y2k , j n2j=1

n2∑ , where Y2k , j , for j = 1,2,…,n2 ,  are the Phase-II observations of 

the second sample. Next, obtain the combined-sample mean Yk = n1Y1k + n2Y2k( ) n1 + n2( ) . 

If Zk = Yk − µ0( ) n1 + n2⎡
⎣

⎤
⎦ σ 0 ∈I4 , the process is proclaimed as in-control; otherwise, the 

process is declared as out-of-control.

Let 1aP  and 2aP  be the probabilities of declaring an in-control process for the first sample 
and after taking the second sample, respectively. According to Daudin (1992), the probability 

that the process is regarded as in-control can be expressed as Pa = Pa1 + Pa2 , where 

Pa1 = Φ L1 +δ n1( )−Φ −L1 +δ n1( )  (1)

and 

Pa2 = Φ cL2 + rcδ −
n1
n2
z

⎛

⎝
⎜

⎞

⎠
⎟ − Φ −cL2 + rcδ −

n1
n2
z

⎛

⎝
⎜

⎞

⎠
⎟

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥Z∈I2*

∫ φ(z)dz . (2)

The symbols Φ ⋅( )  and φ ⋅( )  shown in Equations (1) and / or (2) represent the standard normal 
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L Out-of-control (I3)
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(a) (b)

Figure 1: Graphical view of the (a) DS X and (b) VSS X charts’ operation

cumulative distribution function (cdf) and the standard normal probability density function 

(pdf). Likewise, I2
∗ = −L+δ n1 ,−L1 +δ n1⎡

⎣ )∪ L1 +δ n1 ,L+δ n1( ⎤
⎦ , c = n1 + n2( ) n2 , 

r = n1 + n2   and δ = µ1 − µ0 σ 0  denotes the magnitude of the standardised mean shift with 

µ1  being the out-of-control mean. The ARL and SDRL are defined as 

1ARL
1 aP

=
−

 (3)

and 

SDRL ,
1

a

a

P
P

=
−

 (4) 

respectively. Also, the ASS at each sampling time for either taking the first sample with size n1 
or the first and second samples with size n1 + n2 is

ASS = n1 + n2 Φ L+δ n1( )−Φ L1 +δ n1( )+Φ −L1 +δ n1( )−Φ −L+δ n1( )⎡
⎣⎢

⎤
⎦⎥.

 (5)

The in-control process mean µ0  and standard deviation σ 0  are usually unknown. 
Both parameters are estimated from an in-control Phase-I dataset which comprises m 

samples, each having n observations. The estimator µ̂0  of µ0  is µ̂0 = Xk mk=1

m∑ , where 

Xk = Xk , j nj=1

n∑  is the kth sample mean from the Phase-I process; while the estimator σ̂ 0  of 

σ 0  is σ̂ 0 = Xk , j − Xk( )2 m n−1( )⎡⎣ ⎤⎦j=1

n∑k=1

m∑ .

For the DS X  chart with estimated process parameters, let 1âP  and 2âP  denote the 
conditional probabilities as follows (Teoh et al. 2014):
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P̂a1 = Φ U
n1
mn

+VL1 −δ n1
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
− Φ U

n1
mn

−VL1 −δ n1
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

 (6)

and

P̂a2 = P̂4Vφ U
n1
mn

+Vz −δ n1
⎛

⎝
⎜

⎞

⎠
⎟z∈I2

∫ dz , (7)

where

P̂4 = Φ U
n2
mn

+V
L2 n1 + n2 − z n1

n2

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟
−δ n2

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
− Φ U

n2
mn

−V
L2 n1 + n2 + z n1

n2

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟
−δ n2

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
.  (8)

The random variable U follows a standard normal distribution, µ̂0 ∼ N µ0 ,σ 0
2 mn( )⎡⎣ ⎤⎦ and the 

random variable V2 has a gamma distribution, i.e. V 2 ∼ γ m n−1( ) 2,2 m n−1( )⎡⎣ ⎤⎦ . Here, U 
and V are defined as 

U = µ̂0 − µ0( ) mn
σ 0

 (9)

and 

V =
σ̂ 0

σ 0

. (10)

The pdfs of U and V are fU (u) = φ(u)  and fV (v) = 2vfγ v
2 m n−1( ) 2,2 m n−1( )( ) , 

respectively. Note that the conditional ARL, SDRL and ASS with known process parameters 
are presented in Eqs. (3), (4) and (5), respectively. When the process parameters are estimated, 
the unconditional ARL is expressed as (Teoh et al. 2014):

ARL = 1
1− P̂a

fU (u) fV (v)dv du0

+∞

∫−∞

+∞

∫ , (11)

where P̂a = P̂a1 + P̂a2  is the probability that the process is in-control. The SDRL of the DS X  
chart with estimated process parameters is defined as

SDRL =  
1+ P̂a

(1− P̂a )
2 fU (u) fV (v)dv du

0

+∞

∫−∞

+∞

∫
⎡

⎣
⎢

⎤

⎦
⎥ − ARL2 . (12) 

Also, when the process parameters are estimated, the ASS at each sampling time is equal to

ASS = n1 + n2 P̂2( ) fU (u) fV (v)dv du0

+∞

∫−∞

+∞

∫ , (13)
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where the probability, P̂2  is as follows:

P̂2 = Φ U n1 mn( ) −VL1 −δ n1⎡
⎣⎢

⎤
⎦⎥ − Φ U n1 mn( ) −VL−δ n1⎡

⎣⎢
⎤
⎦⎥ +

Φ U n1 mn( ) +VL−δ n1⎡
⎣⎢

⎤
⎦⎥ − Φ U n1 mn( ) +VL1 −δ n1⎡

⎣⎢
⎤
⎦⎥ . 

3. The VSS X  Chart

Similar to the DS X  chart presented in Section 2, the observations ,1'kY , ,2'kY , …, ,'
kk nY  for k 

= 1, 2, … are taken from the Phase-II process, where the observations in sample k are iid normal 

N µ0 ,σ 0
2( ) random variables. The size of the sample, which can vary between two values Sn  

and Ln  nS < nL( ) , always depends on the previous chart’s statistic, Z 'k =  nk Y 'k− µ0( )⎡
⎣

⎤
⎦ σ 0 , 

where ,1
' 'kn
k k j kj

Y Y n
=

= ∑  is the mean of the kth subgroup or sampling time. Figure 1(b) 
displays a graphical view of the VSS X  chart. Here, 0W >  and K W≥  are the warning 
and control limits, respectively. Three conditions are considered here. If the chart’s statistic, 

'kZ  falls within the interval IL = −K ,−W )∪ W ,K ⎤⎦(⎡
⎣ , the process is potentially shifting to an 

out-of-control state and a large sample size (nL) should be taken for the next sample in order 

to tighten the control. If Z 'k ∈IS = −W ,W⎡⎣ ⎤⎦ , a small sample size (nS) should be taken for the 

next sample. However, if 'kZ  falls outside the interval −K ,K⎡⎣ ⎤⎦ , the process is out-of-control 
and assignable cause(s) may exist; thus, immediate actions need to be taken to remove the 
assignable cause(s).

According to Costa (1994), the VSS X  chart can be expressed in terms of the Markov 
chain transition probability matrix P as shown below: 

P = Q r
0T 1

⎛

⎝
⎜

⎞

⎠
⎟ =

PS (nS ) PL(nS ) 1− PS (nS )− PL(nS )

PS (nL ) PL(nL ) 1− PS (nL )− PL(nL )

0 0 1

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
,  (14)

where Q is the matrix of transient probabilities and vector r fulfils r = 1−Q1  with 1 = 1,  1( )T . 
Also, the probabilities ( )S kP n  and ( )L kP n  with nk = nS ,  nL{ } are defined as

PS (nk ) = Φ δ nk +W( )−Φ δ nk −W( )  
(15)

and

PL(nk ) = Φ δ nk + K( )−Φ δ nk − K( )+Φ δ nk −W( )−Φ δ nk +W( ) . (16)

For the VSS X  chart with known process parameters, the ARL and SDRL are equal to
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ARL = qT I −Q( )−11  (17)

and

SDRL = 2qT I −Q( )−2Q1−ARL2 +ARL , (18)

where, the vector of initial probabilities is q = 1,  0( )T . The ASS of the VSS X  chart is 
computed as 

ASS = nS ,nL ,nS( )R−1 1,  0,  0( )T , (19)

where the matrix R is 

1 1 1
= ( ) ( ) 1 0

1 ( ) ( ) 1 ( ) ( ) 1
L S L L

S S L S S L L L

P n P n
P n P n P n P n

 
 − 
 − − − − − 

R . (20)

When the process parameters are estimated, the estimators µ̂0  and σ̂ 0  of the VSS X  chart 
can be computed using the same method shown in Section 2. The conditional probabilities 

P̂S nk( ) and P̂L nk( )  derived from Castagliola et al. (2012) are defined as

P̂S nk( ) = Φ U
nk
mn

+VW −δ nk
⎛

⎝
⎜

⎞

⎠
⎟ − Φ U

nk
mn

−VW −δ nk
⎛

⎝
⎜

⎞

⎠
⎟  (21)

and 

P̂L nk( ) = Φ U
nk
mn

−VW −δ nk
⎛

⎝
⎜

⎞

⎠
⎟ − Φ U

nk
mn

−VK −δ nk
⎛

⎝
⎜

⎞

⎠
⎟ +

Φ U
nk
mn

+VK −δ nk
⎛

⎝
⎜

⎞

⎠
⎟ − Φ U

nk
mn

+VW −δ nk
⎛

⎝
⎜

⎞

⎠
⎟ ,  (22)

where U and V are defined in Eqs. (9) and (10), respectively. 
For the VSS X  chart with estimated process parameters, the ARL and SDRL are defined 

as (Castagliola et al. 2012) 

ARL = qT I − Q̂( )−11
0

+∞

∫−∞

+∞

∫ fU u( ) fV v( )dvdu  (23)

and 

SDRL = 2qT I − Q̂( )−2 Q̂1+ qT I − Q̂( )−11⎡
⎣⎢

⎤
⎦⎥
fU u( ) fV v( )dv du

0

+∞

∫−∞

+∞

∫ −ARL2 , (24)
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respectively, where Q̂  is the matrix Q , which can be obtained from Eq. (14). Note that the 

probabilities PS nk( )  and PL nk( )  in matrix Q  are replaced by P̂S nk( )  and P̂L nk( )  in matrix 

Q̂ . The ASS for the VSS X  chart with estimated process parameters is equal to

ASS = nS ,nL ,nS( )R̂−1 1,0,0( )T fU u( ) fV v( )dv du
0

+∞

∫−∞

+∞

∫ , (25)

where R̂  is the matrix R in Eq. (20) with the conditional probabilities P̂S nk( )  and P̂L nk( )  

replacing PS nk( )  and PL nk( ) , respectively.

4. A Comparative Study on the DS X  and VSS X  Charts

In this section, a comparison of the ARL0, ARL1, SDRL0, SDRL1, ASS0 and ASS1 performances 
between the DS X  and VSS X  charts are discussed. Here, the subscripts ‘0’ and ‘1’ for the 
ARL, SDRL and ASS represent the in-control and out-of-control cases, respectively. Note that 

the 0ARL 370.40=  and ASS0 = n∈ 4,  8{ }  are considered for both the DS X  and VSS X  
charts throughout this paper. 

Table 1 presents the optimal charts’ parameters (n1,  n2 ,  L1,  L,  L2 )  and ( ,  ,  ,  )S Ln n W K  

for the DS X  and VSS X  charts, respectively, for δ opt ∈ 0.5,  1.0,  1.5{ } , ASS0 = n∈ 4,  8{ } , 

0ARL 370.40=  and m∈ 10,  20,  40,  80,  +∞{ } . Here, δ opt  is the standardised mean shift, for 
which a quick detection is desired. Castagliola et al. (2012) stated that small and moderate 

sample sizes are commonly used in the field of industry. Therefore, ASS0 = n∈ 4,  8{ }are 

considered throughout this paper. The optimal chart’s parameters 1 2 1 2( ,  ,  ,  ,  )n n L L L  for the 
DS X  chart with known (represented with the number of the Phase-I samples, m = +∞ ) and 

Table 1: 1 2 1 2( ,  ,  ,  ,  )n n L L L combination of the optimal DS X  chart and ( ,  ,  ,  )S Ln n W K  combination of 
the optimal VSS X chart for both cases of known and estimated process parameters when 0ARL 370.40= , ASS0 = n∈ 4,  8{ } , m∈ 10,  20,  40,  80,  +∞{ }  and δ opt ∈ 0.5,1.0,1.5{ }

n = 4 n = 8

DS X VSS X DS X VSS X

1 2

1 2

( ,  ,  
,  ,  )
n n

L L L
( ,  ,  

,  )
S Ln n

W K
1 2

1 2

( ,  ,  
,  ,  )
n n

L L L
( ,  ,  

,  )
S Ln n

W K
δ opt m

0.5 10 (2, 13,
1.49884, 4.60072, 2.62312)

(1, 15,
1.28832, 2.84686)

(6, 9,
1.27694, 5.35805, 2.98016)

(1, 15,
0.69570, 2.98450)

20 (2, 13,
1.46228, 5.59510, 2.69056)

(1, 15,
1.26592, 2.93325)

(6, 9,
1.24887, 5.57805, 2.98638)

(1, 15,
0.68321, 3.00263)

40 (2, 13,
1.44409, 5.36108, 2.70426)

(1, 15,
1.25054, 2.97076)

(6, 9,
1.23477, 5.15758, 2.97810)

(2, 15,
0.73860, 3.00523)

80 (2, 13,
1.43506, 5.28096, 2.69961)

(1, 15,
1.24202, 2.98679)

(6, 9,
1.22771, 5.09559, 2.96822)

(2, 15,
0.73429, 3.00400)

to be continued...
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+∞ (2, 13,
1.42608, 5.02070, 2.67690)

(1, 15,
1.23303, 3.00000)

(6, 9,
1.22064, 5.16299, 2.95076)

(2, 15,
0.72985, 3.00000)

1.0 10 (2, 11,
1.39900, 4.00021, 2.68518)

(2, 15,
1.48574, 2.84695)

(6, 9,
1.27694, 5.35805, 2.98016)

(7, 15,
1.60121, 2.98264)

20 (3, 10,
1.70131, 4.33676, 2.71573)

(3, 13,
1.68013, 2.93290)

(6, 9,
1.24887, 5.57805, 2.98638)

(7, 15,
1.56318, 3.00161)

40 (3, 10,
1.67311, 5.14775, 2.73664)

(3, 15,
1.74346, 2.97038)

(6, 9,
1.23477, 5.15758, 2.97810)

(7, 15,
1.54278, 3.00485)

80 (3, 10,
1.65895, 5.42708, 2.73675)

(3, 15,
1.72971, 2.98657)

(6, 9,
1.22771, 5.09559, 2.96822)

(7, 15,
1.53209, 3.00384)

+∞ (3, 10,
1.64485, 5.12469, 2.72061)

(3, 15,
1.71548, 3.00000)

(6, 9,
1.22064, 5.16299, 2.95076)

(7, 15,
1.52189, 3.00000)

1.5 10 (3, 6,
1.46511, 3.69145, 2.80460)

(3, 10,
1.52839, 2.84859)

(6, 9,
1.27686, 4.62118, 2.98031)

(7, 15,
1.60121, 2.98264)

20 (3, 6,
1.42587, 4.54789, 2.87077)

(3, 10,
1.49630, 2.93299)

(6, 9,
1.24887, 5.23773, 2.98638)

(7, 15,
1.56318, 3.00161)

40 (3, 6,
1.40442, 5.23469, 2.89397)

(3, 10,
1.47613, 2.97035)

(6, 9,
1.23477, 5.15758, 2.97810)

(7, 15,
1.54278, 3.00485)

80 (3, 6,
1.39369, 5.38434, 2.89853)

(3, 10,
1.46523, 2.98656)

(6, 9,
1.22771, 5.09559, 2.96822)

(7, 15,
1.53209, 3.00384)

+∞ (3, 6,
1.38299, 5.28042, 2.89308)

(3, 10,
1.45401, 3.00000)

(6, 9,
1.22064, 5.16299, 2.95076)

(7, 15,
1.52189, 3.00000)

estimated (represented with m∈ 10,  20,  40,  80{ } ) process parameters are computed from the 
optimal design procedures proposed by Irianto and Shinozaki (1998) and Khoo et al. (2013b), 
respectively. In addition, the optimisation procedures provided by Castagliola et al. (2012) are 

used to compute the optimal chart’s parameters ( ,  ,  ,  )S Ln n W K  for the VSS X  chart with 
both cases of known and estimated process parameters. For example, when n = 4, m = 80 

and δ opt = 1.0 , the optimal chart’s parameters ( 1 3n = , 2 10n = , 1 1.65895L = , 5.42708L = , 

2 2.73675L = ) for the DS X  chart with estimated process parameters produce the smallest 
ARL1 value of 2.12 (Table 3) among all the possible combinations of chart’s parameters; while 
for the VSS X  chart with estimated process parameters, the smallest ARL1 value of 3.04 

(Table 3) is computed from the optimal chart’s parameters ( 3Sn = , 15Ln = , 1.72971W = , 
2.98657K = ).

Tables 2, 3 and 4 display the ARL, SDRL and ASS profiles for the DS and VSS X  charts 

with estimated and known process parameters, for different combinations of m, n, δ  and δ opt  
when ARL0 = 370.40. The ARL, SDRL and ASS of the DS X  and VSS X  charts are computed 

from the formulae shown in Sections 2 and 3, respectively. The optimal charts’ parameters ( 1n , 

2n , 1L , L , 2L ) and ( Sn , Ln , W , K ) listed in Table 1 are used to calculate the ARL, SDRL, 
and ASS of the DS X  and VSS X  charts, respectively. These ARL, SDRL and ASS values are 

presented in Tables 2 to 4. For instance, when n = 4, m = 20 and δ opt = 0.5 , the optimal chart’s 

parameters ( 1Sn = , 15Ln = , 1.26592W = , 2.93325K = ) (Table 1) for the VSS X  chart with 
estimated process parameters produce ARL1 = 28.05, SDRL1 = 81.77 and ASS1 = 5.67 (Table 
2). With these chart’s parameters, we have ARL1 = 175.81, SDRL1 = 452.29 and ASS1 = 4.63 
for δ = 0.25; while ARL1 = 3.73, SDRL1 = 2.34 and ASS1 = 4.52 for δ = 1.00 (Table 2). Note 

......continuation
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that in Table 4, we only provide the ARL, SDRL and ASS values for the DS X  and VSS X  

charts when n = 4. This is because when n = 8 and δ opt ∈{1.0, 1.5}, both the DS X  and VSS 
X  charts with known and estimated process parameters have the same combination of optimal 
charts’ parameters (Table 1). Consequently, when n = 8, the ARL, SDRL and ASS obtained in 

Table 3 (δ opt = 1.0) will be the same as those computed in Table 4 (δ opt = 1.5) ; thus, they are 
not presented again.

When comparing between control charts, the smallest ARL1, SDRL and ASS values are 
preferred. In Tables 2 to 4, all the DS X  and VSS X  charts attain the same ARL0 = 370.40 

and 0ASS n= ∈ {4, 8}, but different SDRL0 values when m ∈ {10, 20, 40, 80}. For fixed δ opt , 
m and n, the SDRL0 values for the VSS X  chart with estimated process parameters ( m ∈
{10, 20, 40, 80}) are significantly higher than that of the DS X  chart with estimated process 
parameters. This suggests that the VSS X  chart’s run length variability and dispersion are 
larger than that of the DS X  chart when the process parameters are estimated. This large 
SDRL0 value for the VSS X  chart is unfavourable. Therefore, when the process is in-control 
and the process parameters are estimated, the DS X  chart surpasses the VSS X  chart. As m 
increases, the SDRL0 values for both charts with estimated process parameters decrease and 
approach those of the known-process-parameter case. 

With reference to Tables 2 to 4, when the process is out-of-control, it is obvious that most 
of the ARL1 and SDRL1 values for the VSS X  chart are greater than that of the DS X  chart. 

For example, when δ opt  = 1.0, δ  = 0.25, m = 10 and n = 4, the ARL1 and SDRL1 values for 

Table 2: ARL, SDRL and ASS of the optimal DS X  and VSS X  charts when δ opt = 0.5 , 0ARL = 370.40, 
n ∈ 4, 8{ } ,  m ∈ {10, 20, 40, 80, +∞ } and δ ∈ 0.00,  0.25, 0.50, 0.75, 1.00,  1.50,  2.00, 3.00{ }

n = 4 n = 8

DS X VSS X DS X VSS X

m δ (ARL, SDRL, ASS) (ARL, SDRL, ASS) (ARL, SDRL, ASS) (ARL, SDRL, ASS)

10 0.00 (370.40, 1510.84, 4.00) (370.40, 1767.70, 4.00) (370.40, 771.33, 8.00) (370.40, 768.64, 8.00)
0.25 (172.72, 876.45, 4.30) (212.42, 1189.43, 4.47) (112.59, 322.88, 8.69) (135.01, 360.72, 8.86)
0.50 (28.27, 189.78, 5.18) (46.22, 358.25, 5.15) (12.58, 32.22, 10.41) (16.56, 44.41, 9.18)
0.75 (5.87, 19.13, 6.52) (8.46, 49.30, 4.95) (2.88, 3.68, 12.36) (4.38, 4.19, 7.21)
1.00 (2.60, 3.02, 8.13) (3.95, 4.47, 4.39) (1.41, 0.92, 13.79) (2.78, 1.25, 5.63)
1.50 (1.40, 0.81, 11.23) (2.57, 1.29, 4.26) (1.01, 0.13, 14.27) (2.16, 0.64, 5.03)
2.00 (1.11, 0.37, 12.79) (2.05, 0.84, 4.28) (1.00, 0.02, 11.86) (1.91, 0.52, 4.88)
3.00 (1.00, 0.06, 9.82) (1.46, 0.55, 3.29) (1.00, 0.00, 6.34) (1.50, 0.51, 3.70)

20 0.00 (370.40, 746.32, 4.00) (370.40, 805.22, 4.00) (370.40, 537.49, 8.00) (370.40, 534.01, 8.00)
0.25 (123.36, 324.68, 4.32) (175.81, 452.29, 4.63) (79.88, 151.53, 8.71) (104.79, 189.16, 9.03)
0.50 (17.23, 38.51, 5.23) (28.05, 81.77, 5.67) (9.62, 13.70, 10.49) (12.62, 17.76, 9.51)
0.75 (4.66, 5.90, 6.63) (6.37, 8.08, 5.29) (2.58, 2.45, 12.47) (4.07, 2.69, 7.24)
1.00 (2.35, 2.04, 8.32) (3.73, 2.34, 4.52) (1.35, 0.75, 13.91) (2.73, 1.12, 5.61)
1.50 (1.36, 0.72, 11.64) (2.56, 1.18, 4.40) (1.01, 0.11, 14.57) (2.16, 0.62, 5.06)
2.00 (1.10, 0.34, 13.74) (2.07, 0.78, 4.46) (1.00, 0.01, 12.60) (1.92, 0.51, 4.93)
3.00 (1.00, 0.06, 13.39) (1.49, 0.55, 3.49) (1.00, 0.00, 6.44) (1.50, 0.51, 3.75)

to be continued...
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40 0.00 (370.40, 528.44, 4.00) (370.40, 548.47, 4.00) (370.40, 445.50, 8.00) (370.40, 444.14, 8.00)
0.25 (91.73, 162.24, 4.32) (150.81, 258.72, 4.71) (63.60, 89.48, 8.73) (89.07, 123.67, 9.12)
0.50 (13.67, 18.59, 5.26) (21.06, 33.91, 6.00) (8.44, 9.56, 10.54) (11.10, 11.84, 9.95)
0.75 (4.21, 4.25, 6.68) (5.77, 4.62, 5.46) (2.44, 2.05, 12.53) (3.76, 2.23, 7.88)
1.00 (2.25, 1.77, 8.39) (3.64, 2.10, 4.56) (1.32, 0.68, 13.93) (2.47, 0.93, 6.35)
1.50 (1.34, 0.69, 11.73) (2.55, 1.13, 4.47) (1.01, 0.10, 14.24) (1.88, 0.52, 5.58)
2.00 (1.09, 0.32, 13.78) (2.08, 0.75, 4.54) (1.00, 0.01, 11.37) (1.58, 0.52, 4.82)
3.00 (1.00, 0.05, 13.03) (1.51, 0.54, 3.58) (1.00, 0.00, 6.15) (1.11, 0.31, 2.67)

80 0.00 (370.40, 441.81, 4.00) (370.40, 451.70, 4.00) (370.40, 404.79, 8.00) (370.40, 404.87, 8.00)
0.25 (75.54, 101.96, 4.33) (136.17, 184.09, 4.75) (56.00, 66.21, 8.74) (80.69, 95.43, 9.16)
0.50 (12.20, 13.69, 5.27) (18.27, 21.55, 6.19) (7.87, 8.05, 10.56) (10.43, 9.71, 10.02)
0.75 (3.99, 3.69, 6.70) (5.53, 3.85, 5.54) (2.36, 1.87, 12.56) (3.69, 2.06, 7.86)
1.00 (2.19, 1.66, 8.43) (3.60, 2.00, 4.58) (1.31, 0.65, 13.95) (2.46, 0.90, 6.34)
1.50 (1.33, 0.67, 11.78) (2.54, 1.10, 4.50) (1.01, 0.10, 14.20) (1.88, 0.51, 5.58)
2.00 (1.09, 0.32, 13.81) (2.08, 0.74, 4.58) (1.00, 0.01, 11.18) (1.58, 0.52, 4.82)
3.00 (1.00, 0.05, 12.91) (1.51, 0.54, 3.63) (1.00, 0.00, 6.12) (1.11, 0.31, 2.67)

+∞ 0.00 (370.40, 369.90, 4.00) (370.40, 369.90, 4.00) (370.40, 369.90, 8.00) (370.40, 369.90, 8.00)

0.25 (60.25, 59.75, 4.33) (120.03, 118.84, 4.77) (48.70, 48.20, 8.74) (72.41, 71.12, 9.19)
0.50 (10.79, 10.28, 5.28) (15.93, 13.93, 6.40) (7.30, 6.78, 10.58) (9.79, 8.03, )10.10
0.75 (3.77, 3.23, 6.73) (5.32, 3.33, 5.60) (2.28, 1.71, 12.59) (3.62, 1.91, 7.84)
1.00 (2.14, 1.56, 8.47) (3.56, 1.92, 4.59) (1.29, 0.61, 13.99) (2.45, 0.88, 6.32)
1.50 (1.32, 0.65, 11.81) (2.54, 1.08, 4.53) (1.01, 0.09, 14.32) (1.88, 0.51, 5.59)
2.00 (1.09, 0.31, 13.77) (2.08, 0.73, 4.62) (1.00, 0.01, 11.44) (1.58, 0.51, 4.83)
3.00 (1.00, 0.05, 12.13) (1.52, 0.54, 3.67) (1.00, 0.00, 6.13) (1.11, 0.31, 2.66)

the DS X  chart are 176.46 and 897.42 as opposed to 215.58 and 1163.37 for the VSS X  
chart (Table 3). Unequivocally, the DS X  chart outperforms the VSS X  chart, in terms of the 
detection speed and variability of the run length distribution, for all ranges of shifts. However, 
there still exist some differences in the ASS values between the DS X  and VSS X  charts. For 

any fixed δ opt , δ , m and n, the ASS1 value of the DS X  chart is smaller than that of the VSS 

X  chart when δ ≤ 0.50  and vice versa when δ ≥ 0.75 . For both charts, when δ opt , δ , m and n 
are fixed, the ARL1 and SDRL1 values decrease, while the ASS1 value increases as m increases. 
Therefore, the ARL1, SDRL1 and ASS1 values for the cases with estimated process parameters 
approach that of the control charts with known process parameters.

Table 3: ARL, SDRL and ASS of the optimal DS X  and VSS X  charts when δ opt = 1.0, 0ARL = 370.40, 
n ∈ 4, 8{ } ,  m ∈ {10, 20, 40, 80, +∞ } and δ ∈ 0.00,  0.25, 0.50, 0.75, 1.00,  1.50,  2.00, 3.00{ }

m δ

n = 4 n = 8

DS X VSS X DS X VSS X
(ARL, SDRL, ASS) (ARL, SDRL, ASS) (ARL, SDRL, ASS) (ARL, SDRL, ASS)

10 0.00 (370.40, 1531.14, 4.00) (370.40, 1740.74, 4.00) (370.40, 771.33, 8.00) (370.40, 760.49, 8.00)
0.25 (176.46, 897.42, 4.27) (215.58, 1163.37, 4.44) (112.59, 322.88, 8.69) (143.43, 362.81, 8.59)
0.50 (30.25, 197.90, 5.04) (49.30, 355.55, 5.28) (12.58, 32.22, 10.41) (19.92, 52.45, 9.71)
0.75 (6.20, 20.89, 6.19) (8.73, 52.60, 5.47) (2.88, 3.68, 12.36) (4.11, 5.59, 9.75)
1.00 (2.58, 3.20, 7.51) (3.52, 4.91, 5.15) (1.41, 0.92, 13.79) (1.99, 1.21, 8.94)

to be continued...
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1.50 (1.34, 0.73, 9.77) (2.06, 0.96, 4.81) (1.01, 0.13, 14.27) (1.18, 0.40, 7.61)
2.00 (1.09, 0.33, 10.32) (1.56, 0.63, 4.24) (1.00, 0.02, 11.86) (1.02, 0.12, 7.06)
3.00 (1.00, 0.06, 6.41) (1.10, 0.30, 2.56) (1.00, 0.00, 6.34) (1.00, 0.00, 7.00)

20 0.00 (370.40, 744.37, 4.00) (370.40, 793.53, 4.00) (370.40, 537.49, 8.00) (370.40, 531.61, 8.00)
0.25 (129.59, 331.86, 4.30) (187.84, 451.02, 4.37) (79.88, 151.53, 8.71) (114.40, 197.06, 8.65)
0.50 (19.20, 42.69, 5.16) (37.63, 98.71, 5.29) (9.62, 13.70, 10.49) (14.99, 23.04, 9.96)
0.75 (4.98, 6.63, 6.50) (7.56, 12.92, 5.82) (2.58, 2.45, 12.47) (3.65, 3.20, 9.90)
1.00 (2.31, 2.07, 8.06) (3.24, 2.44, 5.57) (1.35, 0.75, 13.91) (1.93, 1.00, 8.99)
1.50 (1.25, 0.58, 10.52) (1.79, 0.78, 4.96) (1.01, 0.11, 14.57) (1.18, 0.39, 7.61)
2.00 (1.05, 0.22, 10.40) (1.32, 0.50, 4.17) (1.00, 0.01, 12.60) (1.01, 0.12, 7.05)
3.00 (1.00, 0.02, 5.11) (1.02, 0.12, 3.07) (1.00, 0.00, 6.44) (1.00, 0.00, 7.00)

40 0.00 (370.40, 526.72, 4.00) (370.40, 545.94, 4.00) (370.40, 445.50, 8.00) (370.40, 443.54, 8.00)
0.25 (98.55, 170.29, 4.31) (163.95, 268.31, 4.43) (63.60, 89.48, 8.73) (98.20, 132.56, 8.68)
0.50 (15.23, 20.99, 5.20) (27.54, 45.35, 5.62) (8.44, 9.56, 10.54) (12.98, 15.22, 10.09)
0.75 (4.43, 4.62, 6.59) (6.11, 6.08, 6.18) (2.44, 2.05, 12.53) (3.45, 2.56, 9.96)
1.00 (2.18, 1.73, 8.24) (3.09, 1.88, 5.86) (1.32, 0.68, 13.93) (1.91, 0.92, 9.00)
1.50 (1.23, 0.54, 11.11) (1.81, 0.77, 5.36) (1.01, 0.10, 14.24) (1.17, 0.38, 7.60)
2.00 (1.04, 0.21, 12.04) (1.33, 0.51, 4.44) (1.00, 0.01, 11.37) (1.01, 0.11, 7.05)
3.00 (1.00, 0.02, 7.77) (1.01, 0.12, 3.09) (1.00, 0.00, 6.15) (1.00, 0.00, 7.00)

80 0.00 (370.40, 441.10, 4.00) (370.40, 451.04, 4.00) (370.40, 404.79, 8.00) (370.40, 404.72, 8.00)
0.25 (82.34, 109.91, 4.31) (150.68, 197.26, 4.45) (56.00, 66.21, 8.74) (89.93, 105.01, 8.69)
0.50 (13.58, 15.42, 5.22) (23.90, 29.86, 5.74) (7.87, 8.05, 10.56) (12.06, 12.39, 10.15)
0.75 (4.18, 3.95, 6.63) (5.72, 4.69, 6.30) (2.36, 1.87, 12.56) (3.36, 2.32, 9.99)
1.00 (2.12, 1.59, 8.30) (3.04, 1.73, 5.91) (1.31, 0.65, 13.95) (1.89, 0.89, 9.00)
1.50 (1.22, 0.52, 11.22) (1.81, 0.75, 5.42) (1.01, 0.10, 14.20) (1.17, 0.38, 7.60)
2.00 (1.04, 0.20, 12.34) (1.33, 0.50, 4.48) (1.00, 0.01, 11.18) (1.01, 0.11, 7.05)
3.00 (1.00, 0.01, 8.86) (1.01, 0.12, 3.08) (1.00, 0.00, 6.12) (1.00, 0.00, 7.00)

+∞ 0.00 (370.40, 369.90, 4.00) (370.40, 369.90, 4.00) (370.40, 369.90, 8.00) (370.40, 369.90, 8.00)

0.25 (66.70, 66.19, 4.32) (136.05, 135.26, 4.46) (48.70, 48.20, 8.74) (81.65, 80.93, 8.71)
0.50 (12.00, 11.49, 5.24) (20.66, 19.22, 5.87) (7.30, 6.78, 10.58) (11.20, 10.09, 10.22)
0.75 (3.92, 3.39, 6.66) (5.39, 3.78, 6.42) (2.28, 1.71, 12.59) (3.28, 2.11, 10.00)
1.00 (2.05, 1.47, 8.35) (2.99, 1.60, 5.96) (1.29, 0.61, 13.99) (1.88, 0.86, 9.00)
1.50 (1.21, 0.50, 11.24) (1.81, 0.73, 5.47) (1.01, 0.09, 14.32) (1.17, 0.38, 7.59)
2.00 (1.04, 0.19, 12.17) (1.33, 0.50, 4.51) (1.00, 0.01, 11.44) (1.01, 0.10, 7.04)
3.00 (1.00, 0.01, 7.71) (1.01, 0.12, 3.08) (1.00, 0.00, 6.13) (1.00, 0.00, 7.00)

By observing the results in Tables 2, 3 and 4, as expected, we found that the ARL and SDRL 
values for both charts when n = 8 are smaller than that of n = 4, for any fixed m and δ . 
When comparing among Tables 2 to 4, the ARL and SDRL values computed from optimal 

charts’ parameters of δ opt = 0.5  (Table 2) tend to be lower for small shifts and higher for large 

shifts compared to those computed from optimal charts’ parameters of δ opt = {1.0, 1.5} (Tables 

3 and 4). This indicates that the optimal charts’ parameters of δ opt = 0.5  are more effective in 

detecting small shifts; while that of δ opt = 1.5  are more powerful for identifying large shifts.

......continuation
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Table 4: ARL, SDRL and ASS of the optimal DS X  and VSS X  charts when δ opt = 1.5, 0ARL = 370.40, n = 4, 
m ∈ {10, 20, 40, 80, +∞ } and δ ∈ 0.00,  0.25, 0.50, 0.75, 1.00,  1.50,  2.00, 3.00{ }

n = 4

DS X VSS X

m δ (ARL, SDRL, ASS) (ARL, SDRL, ASS)

10 0.00 (370.40, 1626.47, 4.00) (370.40, 1714.11, 4.00)
0.25 (187.83, 979.17, 4.21) (220.94, 1123.75, 4.25)
0.50 (37.28, 229.96, 4.77) (58.36, 348.05, 4.83)
0.75 (7.86, 28.25, 5.57) (11.92, 60.23, 5.20)
1.00 (2.85, 4.42, 6.36) (3.86, 7.78, 5.06)
1.50 (1.23, 0.61, 7.11) (1.75, 0.83, 4.38)
2.00 (1.03, 0.18, 6.24) (1.29, 0.49, 3.77)
3.00 (1.00, 0.01, 3.53) (1.02, 0.12, 3.05)

20 0.00 (370.40, 759.84, 4.00) (370.40, 792.53, 4.00)
0.25 (144.90, 357.79, 4.22) (190.03, 450.43, 4.30)
0.50 (24.95, 54.99, 4.84) (41.09, 102.13, 5.05)
0.75 (6.27, 9.18, 5.73) (8.76, 15.23, 5.51)
1.00 (2.57, 2.57, 6.69) (3.46, 2.92, 5.26)
1.50 (1.20, 0.51, 8.01) (1.77, 0.74, 4.49)
2.00 (1.03, 0.16, 7.86) (1.31, 0.49, 3.85)
3.00 (1.00, 0.01, 4.63) (1.02, 0.12, 3.05)

40 0.00 (370.40, 532.07, 4.00) (370.40, 545.35, 4.00)
0.25 (116.70, 193.76, 4.23) (168.81, 270.46, 4.32)
0.50 (20.42, 28.75, 4.87) (33.42, 52.40, 5.17)
0.75 (5.64, 6.30, 5.78) (7.63, 8.50, 5.69)
1.00 (2.43, 2.09, 6.77) (3.32, 2.21, 5.35)
1.50 (1.18, 0.47, 8.25) (1.77, 0.71, 4.55)
2.00 (1.02, 0.15, 8.58) (1.32, 0.49, 3.89)
3.00 (1.00, 0.01, 6.06) (1.01, 0.12, 3.05)

80 0.00 (370.40, 443.80, 4.00) (370.40, 450.88, 4.00)
0.25 (101.29, 132.34, 4.23) (156.40, 201.35, 4.33)
0.50 (18.43, 21.38, 4.88) (29.94, 36.86, 5.23)
0.75 (5.33, 5.31, 5.80) (7.16, 6.60, 5.78)
1.00 (2.36, 1.89, 6.80) (3.26, 1.98, 5.39)
1.50 (1.17, 0.46, 8.29) (1.78, 0.69, 4.57)
2.00 (1.02, 0.15, 8.69) (1.33, 0.49, 3.90)
3.00 (1.00, 0.01, 6.42) (1.01, 0.12, 3.05)

+∞ 0.00 (370.40, 369.90, 4.00) (370.40, 369.90, 4.00)
0.25 (85.62, 85.11, 4.23) (142.72, 141.98, 4.34)
0.50 (16.49, 15.99, 4.89) (26.72, 25.49, 5.30)
0.75 (5.00, 4.48, 5.82) (6.73, 5.23, 5.88)
1.00 (2.29, 1.72, 6.82) (3.20, 1.78, 5.43)
1.50 (1.16, 0.44, 8.31) (1.78, 0.67, 4.59)
2.00 (1.02, 0.14, 8.68) (1.33, 0.49, 3.92)
3.00 (1.00, 0.01, 6.20) (1.01, 0.12, 3.05)
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5. Conclusion 

In this paper, a thorough comparison between the DS X  and VSS X  charts based on the 
performances of the ARL, SDRL and ASS are evaluated. By referring to Tables 2 to 4, the 
SDRL values for both the in-control and out-of-control cases of the VSS X  chart are larger 
than that of the DS X  chart. This shows that the spread of the run length distribution for the 
VSS X  chart is higher than that of the DS X  chart. Since different magnitudes of spread 
of the run length distributions are involved, a comparison between both charts based on the 
median run length and the percentiles of the run length distributions, which are more credible 
alternative performance measures, can be considered in future research. 

The results in this paper show that the DS X  chart is superior to the VSS X  chart for 
monitoring all the process mean shifts in terms of the ARL and SDRL. However, the converse 
is true, in terms of the ASS whenδ ≥ 0.75 . For companies with vast production of high volumes 
of products, a fast out-of-control detection speed will be of main interest as such companies 
do not face problems involving large sample sizes. Such companies may prefer applying the 
DS X  chart to monitor their production processes as the DS X  chart detects changes in 
the process mean faster than the VSS X  chart. If the sample size is a major constraint, we 
recommend applying the VSS X  chart. 
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