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ABSTRACT 

Let f  be an orientation-preserving circle diffeomorphism with irrational “rotation number” of 

bounded type and finite number of break points, that is, the derivative f ′  has discontinuities of 

first kind at these points. Suppose f ′  satisfies a certain Zygmund condition which be dependent 
on parameter γ > 0  on each continuity intervals. We prove that the Rauzy-Veech renormalisations 

of f  are approximated by Mobius transformations in 1C -norm if γ ∈(0,1]  and in 2C -norm 

if γ ∈(1,∞) . In particular, we show that if f  has zero mean nonlinearity, renormalisation of 
such maps approximated by piecewise affine interval exchange maps. Further, we consider two 
circle homeomorphisms with the same irrational “rotation number” of bounded type and finite 
number of break points. We prove that if they are not break equivalent then the conjugating map 
between these two maps is singular. 

Keywords: conjugacy; circle diffeomorphism; break point; renormalisation; interval exchange 
transformation; Mobius transformation; Rauzy-Veech induction

ABSTRAK

Andaikan f suatu difeomorfisma bulatan mengawet orientasi dengan “nombor putaran” 

tak nisbah jenis terbatas dan dengan bilangan titik putus yang terhingga, iaitu terbitan f ′  
mempunyai ketakselanjaran jenis pertama pada titik-titik tersebut. Andaikan juga f ′  memenuhi 
syarat Zygmund yang bersandar kepada parameter γ > 0  atas setiap selang keselanjaran. 

Dibuktikan bahawa penormalan semula Rauzy-Veech f  dihampirkan oleh penjelmaan 

Mobius dalam norma- 1C  jika γ ∈(0,1]  dan dihampirkan dalam norma- 2C  jika γ ∈(1,∞) . 

Khususnya, ditunjukkan bahawa jika f  mempunyai penormalan semula ketaklinearan min 
sifar, penghampiran berkenaan merupakan pemetaan pertukaran linear selang afin cebis demi 
cebis. Tambahan kami turut mempertimbangkan dua homeomorfisma bulatan yang mempunyai 
“nombor putaran” tak nisbah yang sama jenis terbatas dan bilangan titik putus yang terhingga. 
Kami buktikan jika kedua-dua pemetaan tersebut tidak setara terputus, maka pemetaan 
berkonjugat di antara mereka adalah singular.

Kata kunci: konjugasi; difeomorfisma bulatan; titik putus; pennormalan semula; penjelmaan 
pertukaran selang; penjelmaan Mobius; aruhan Rauzy-Veech

1.  Introduction

In this work we announce our new results regarding conjugacies and renormalisations of circle 
diffeomorphisms with several break points in short form. The problems on conjugacies and 
renormalisations of circle diffeomorphisms are the most actual problems in the theory of circle 
dynamics. Nowadays these problems have been intensively study by many researchers. The 
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origin of the problem of singularity of conjugacy of piecewise linear circle homeomorphisms 
with two break points goes back to Herman in 1979. Since then the generalisation of Herman’s 
result for the general case, that is homeomorphisms with 3n ≥  break points and trivial product 
jump has been opened. We have solved this problem under a certain condition. Our proof is 
based on to analyse renormalisations of Sinai and Knanin (1989), Mackay (1988) and Stark 
(1988). 

Poincare in 1885 noticed that the orbit structure of orientation-preserving differ- 

omorphism f  is determined by some irrational mod 1, called the rotation number of f  and 

denoted by ρ = ρ( f ) , in the following sense: for any x ∈S1  the mapping f j (x)→ jρ  

is orientation-preserving. Denjoy (1932) proved that if f  is the orientation-preserving 1C
-diffeomorphism of the circle with irrational rotation number ρ  and log 'f  has bounded 

variation then, the orbit { f j (x)} j∈!  is dense and the mapping f j (x)→ jρ  mod 1 can 

therefore be extended by continuity to a homeomorphism h of 1S  which conjugates f  to the 

linear rotation fρ : x→ x + ρ  mod 1. The problem of smoothness of the conjugacy of smooth 
diffeomorphisms has come to be very well understood by authors (Herman 1979; Yoccoz 1984; 

Khanin & Sinai 1987, 1989; Katznelson & Ornstein 1989). They have shown that if f  is 3C  or 

C 2+α  and ρ  satisfies certain Diophantine condition then the conjugacy will be at least 1C . A 
natural generalisation of diffeomorphism of the circle are diffeomorphisms with breaks, those 
are, circle diffeomorphisms which are smooth everywhere with the exception of finitely many 
points at which their derivative has discontinuities of the first kind. Circle diffeomorphisms 
with breaks were introduced by Khanin and Vul (1990; 1991) at the beginning of 90’s. They 

proved that the renormalisations of C 2+α  diffeomorphisms converge exponentially to a two-
dimensional space of the Mobius transformations. Recently Cunha and Smania (2013) studied 

Rauzy-Veech renormalisations of C 2+α  circle diffeomorphisms with several break points. The 
main idea of this work is to consider piecewise-smooth circle homeomorphisms as generalised 
interval exchange transformations. They have proved that Rauzy-Veech renormalisations of 

C 2+α  generalised interval exchange maps satisfying a certain combinatorial conditions are 

approximated by Mobius transformations in 2C -norm. In this work we have generalised their 
result to a wider class of circle diffeomorphisms the so-called Zygmund class. Further, we 
consider two circle homeomorphisms with the same irrational rotation number of bounded type 
and finite number of break points. We study these maps as the generalised interval exchange 
maps. We prove that if two such circle homeomorphisms are not break equivalent then the 
conjugating map between them is singular. In particular, if one of them is pure rotation then the 
invariant measure of second one is singular with respect to Lebesgue measure. 

2. Generalised interval exchange maps

Let I  be an open bounded interval. A generalised interval exchange map (g.i.e.m) f  on I  is 
defined by the following data. Let A  be an alphabet with d ≥ 2  symbols. Consider a partition 

(mod 0)  of I  into d  open subintervals indexed by I =∪Iα . The map f  is defined on ∪Iα  
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and its restriction to each Iα  is an orientation preserving homeomorphism onto the f (Iα ) . 

Let 1r >  be an integer. The g.i.e.m f  is of class rC  if the restriction of f  to each Iα  

extends to a rC -diffeomorphism from the closure of Iα  onto of closure of f (Iα ) . The points 

u1 < ...< ud−1  separating the Iα  are called the singularities (break points) of f .

3. Rauzy-Vech Induction

A pair π = (π0 ,π1)  of bijections πε : A→{1,...,d},  ε ∈{0,1}  describing the ordering 

of the subintervals Iα  before and after the map is iterated. For each ε ∈{0,1},  define 

α (ε ) = πε
−1(d) . If Iα (0) ≠ f (Iα (1) )  we say that f  is Rauzy-Veech renormalisable (or 

simply renormalisable). If Iα (0) > f (Iα (1) )  we say that the letter α (0)  is the winner and the 

letter α (1)  is the loser, we say that f  is type 0 renormalisable and we can define a map ( )R f  

as the first return map of f  to the interval I1 = I \ f (Iα (1) ).Otherwise Iα (0) < f (Iα (1) )
, the letter α (1)  is the winner and the letter α (0)  is the loser, we say that f  is type 1 

renormalisable and we can define a map ( )R f  as the first return map of f  to the interval 

I1 = I \ f (Iα (0) ) . We want to see ( )R f  as a g.i.e.m. To this end we need to associate to this 
map an A -indexed partition of its domain. We do this in the following way. The subintervals 

of the A -indexed partition 1P  of 1I  are denoted by Iα
1 . If f  has type 0, then Iα

1 = Iα  when 

α ≠α (0)  and Iα (0)
1 = Iα (0) \ f (Iα (1) ) . If f  has type 1, Iα

1 = Iα  when α ≠α (1),α (0)  and 

Iα (1)
1 = f −1( f (Iα (1) ) \ Iα (0) ), Iα (0)

1 = Iα (1) \ Iα (1)
1 . It is easy to see that both cases (type 0 and 1) 

we have

R( f )(x) =
f 2(x), if x ∈Iα (1−ε )

1 ,

f (x), otherwise.

⎧
⎨
⎪

⎩⎪

And 1( ( ), , )R f A P is a g.i.e.m, called the Rauzy-Veech renormalisation (or simply renor-

malisation) of f . A g.i.e.m. is infinitely renormalisable if ( )nR f  is well defined, for every 

n ∈ . For every interval of the form J = [a,b)  we denote ∂J ={a}. We say that a g.i.e.m. 

f  has no connection if f m(∂Iα ) ≠ ∂Iβ  for all m ≥1, α ,β ∈A  with π0(β ) ≠ 1 . Let εn  be 

the type of the n -th renormalisation, α n(εn )  be the winner and α n(1− εn )  be the loser of 

the n -th renormalisation. We say that infinitely renormalisable g.i.e.m. f  has k -bounded 

combinatorics (i.e., “rotation number” is bounded type) if for each n and β ,γ ∈A  there exist 



Habibulla Akhadkulov, Mohd. Salmi Md. Noorani & Sokhobiddin Akhatkulov

90

1, 0n p ≥  with 1n n k− <  and 1n n p k− − <  such that α n1
(εn1 ) = β ,  α n1+ p

(1− εn1+ p ) = γ

and α n1+i
(1− εn1+ p ) =  α n1+i+1

(εn1+i )  for every 0 ≤ i < p . We say that a g.i.e.m. :f I I→  

has genus one if f  has at most two discontinuities. Note that every g.i.e.m. with either two 

or three intervals has genus one. If f  is renormalisable and has genus one, it is easy to see 

that ( )R f  has genus one. Note that an acceleration of Rauzy-Veech renormalisation is the 
Mackay-Stark renormalisation and an acceleration of Mackay-Stark renormalisation is the 
Sinai-Knanin renormalisation. 

4. Zygmund Class

To formulate our results we have to define a new class. For this we consider the function 

Z γ :[0,1)→ (0,+∞)  such that Z γ (0) = 0  and 

Zγ (x) = log 1
x

⎛
⎝⎜

⎞
⎠⎟

−γ

x ∈(0,1) andγ > 0.

Let [ , ]T a b=  be a finite interval and consider a continuous function K :T → ! . Denote by 

Δ2K(x,τ )  the second symmetric difference of f  on ,J  i.e., 

Δ2K(x,τ ) = K(x +τ )+ K(x −τ )− 2K(x),

where x T∈ , τ ∈ 0,
T
2

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

 and x +τ ,x −τ ∈T . Now we are ready to define a new class.

Definition 4.1. Let Zk
1+γ , k ∈!  and γ > 0 , be the set of g.i.e.m. :f I I→  such that 

(i) For each α ∈A  we can extend f to Iα  as an orientation preserving 
diffeomorphism;

(ii) On each Iα , 'f  has bounded variation and satisfies 

Δ2 f '(⋅,τ )
L∞ ( Iα )

≤CτZ γ (τ ) ; 

(iii) The g.i.e.m. f  has k -bounded combinatorics;

(iv) The map f  has genus one and has no connection.

Note that the class of real functions satisfying (ii) inequality is wider than C 2+α , for any γ > 0 . 

We remind that the class of real functions satisfying (ii) with Z γ (τ ) = 1  is called the Zygmund 
class. This class was applied to the theory of circle homeomorphisms for the first time by 
Hu and Sullivan (1997). Generally speaking, the function satisfying (ii) does not imply the 

absolute continuity of 'f  on Iα .
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5. Main Results

We need the following notions. Let H  be a non-degenerate interval, let :g H →   be a 
diffeomorphism and let J H⊂  be an interval. We define the Zoom of g  in H , denoted by 

( )H gΞ  the transformation 1 2( )H g A g AΞ =    where 1A  and 2A  are orientation-preserving 

affine maps, which sends [0,1]  into H  and ( )g H  into [0,1]  respectively. Let NM be a 

Mobius transformation :[0,1] [0,1]NM →  such that (0) 0NM = , (1) 1NM =  and

MN (x) =
xN

1+ x(N −1)
.

Denote by qn
α ∈!  the first return time of the interval Iα

n  to the interval ,nI  i.e., 

Rn( f ) |
Iα
n = f

qn
α

 for some qn
α ∈! . Now we define a new quantity as follows:

m̂n
α = exp −

f '(dα
i )− f '(cα

i )
2 f '(dα

i )i=0

qn
α −1

∑
⎛

⎝
⎜

⎞

⎠
⎟ ,

where cα
i  and dα

i  are the left and right endpoints of f i(Iα ) , respectively. Now we are ready 
to formulate our main results. 

Theorem 5.1. Let f ∈Zk
1+γ , γ ∈(0,1] . Then there exists a constant ( ) 0C C f= >  such that 

Ξ
Iα
n (Rn( f ))− M m̂n

α
C1([0,1])

≤ C
nγ

for all α ∈A .

The sketch of proof of this theorem will be given later. Note that the class Zk
1+γ  is “better” when 

γ  increases. More precisely, if γ >1 then second derivative of f  exists on each continuity 

intervals of 'f . This gives more opportunities to better understand behaviour of Ξ Iα
n (Rn( f )) . 

Next, instead of m̂n
α  we define a new quantity as follows: 

mn
α = exp − f ''(x)

2 f '(x)
cα
i

dα
i

∫ dx
i=0

qn
α −1

∑
⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
.

Note that logmn
α  is called nonlinearity of ( )nR f  on Iα

n . Using differentiability of 'f  easily 

can be shown that mn
α  is exponential close to the m̂n

α . Our second main result is the following:
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Theorem 5.2. Let f ∈Zk
1+γ , γ >1. Then there exists a constant ( ) 0C C f= >  such that 

Ξ
Iα
n (Rn( f ))− Mmn

α
C1([0,1])

≤ C
nγ

and

Ξ ''
Iα
n (Rn( f ))− M ''mnα C0 ([0,1])

≤ C
nγ

for all α ∈A .

For the nonlinearity of n -th renormalisation of f  the following estimation holds:

Theorem 5.3. Let f ∈Zk
1+γ , γ >1. Then there exists a constant ( ) 0C C f= >  such that 

mn
α −

f i(In
α )

i=0

qn
α −1

∑
I

f ''(x)
f '(x)0

1

∫ dx ≤ C
nγ −1

.

In particular, if 
1

0

''( ) 0
'( )

f x dx
f x

=∫  then mn
α ≤ C

nγ −1
.

Note that Theorems 5.1, 5.2 and 5.3 generalise the results of Cunha and Smania (2013).

6. Sketch of Proofs of Theorems 5.1 and 5.2 

The proofs of these theorems consist from four steps. 

6.1  Step 1. 

First we analyse the set of real functions satisfying the inequality (ii) in Definition 4.1. We 
show that the modulus of continuity of such functions is

ω (δ ) = δ log 1
δ

⎛
⎝⎜

⎞
⎠⎟

1−γ

if γ ∈(0,1),  

ω (δ ) = δ log log 1
δ

⎛
⎝⎜

⎞
⎠⎟

if γ = 1 , and they are differentiable if γ >1. Moreover, we prove that if a function g  satisfies 

inequality (ii) then it “ almost” preserves barycentres, that is, for any interval [ , ]I a b=  we 
have
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g(za + (1− z)b) = zg(a)+ (1− z)g(b)+O | I | Z γ (| I |)( )
where z  is zoom of the interval I . 

6.2  Step 2 

We define the distortion of the interval [ , ]I a b=  with respect to the function g  as follows

( )
( ; )

g I
I g

I
ℜ =

.

Henceforth, take any x I∈  we consider the distortions:

ℜa (x) = ℜ([a,x];g)andℜb(x) = ℜ([x,b];g).

and we study these distortions as the functions of x I∈ . Utilising relations in Step 1 we prove 
the following several estimations:

ℜa (x)
ℜb(x)

−1= g(a)− g(b)
2g(b)

+O | I | Zγ (| I |)+ | g(a)− g(b) |Ω(| I |,γ )( )
(x − a)(b− x)

ℜ 'b(x)−ℜ 'a (x)
b− a

⎛
⎝⎜

⎞
⎠⎟
= O(| I | Zγ (| I |))

for γ > 0 . In the case of γ >1 we prove that

(x − a)(b− x)(ℜ ''a (x)−ℜ ''b(x)) = O(| I | Pγ (| I |))

ℜ 'b(x) = ℜ 'a (x)+O(Pγ (| I |))

where Ω(⋅,γ )  is modulus of continuity of g  for the different γ > 0  and Pγ (⋅)  is defined by 

Pγ (x) = Z γ (x2−n )
n=1

∞

∑

6.3  Step 3 

By definition of Rauzy-Veech renormalisation it implies that the system of intervals 

ℑn = f i(Iα
n ),0 ≤ i < qn

α ,∀α ∈A{ }
consists a partition on [0,1)  that is, 

[0,1) = f i(Iα
n )

i=0

qn
α −1

∪
α∈A
∪ .

Denote by 

|ℑn |= maxα∈A
max
0≤i<qn

α
| f i(Iα

n ) |{ }.
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Cunha and Smania (2013) have shown that if f  has k -bounded combinatorics and log 'f  

has bounded variation then there exists a λ ∈(0,1)  such that |ℑn |≤ λ n . Next we define 

℘n
α (z) = log

ℜ([cn
α ,x]; f qn

α

)

ℜ([x,dn
α ]; f qn

α

)
+ logmn

α , x ∈In
α = [cn

α ,dn
α ],

 

where z =
x − cn

α

dn
α − cn

α . Since the distortion is multiplicative with respect to composition, we have 

℘n
α (z) = log

ℜ([cn,i
α ,xi]; f )

ℜ([xi ,dn,i
α ], f )

+ logmn
α

i=0

qn
α −1

∑

where cn,i
α ,xi  and dn,i

α  are i -th iteration of cn,i
α ,xi  and dn,i

α , respectively. Using this and 
relations in Step 2 we show that 

℘n
α

C0 ([0,1])
≤ C
nγ '
,

Id(1− Id)(℘n
α )'

C0 ([0,1])
≤ C
nγ

for γ > 0 , for γ >1 we show that 

Id(1− Id)(℘n
α )''

C0 ([0,1])
≤ C
nγ −1

for all α ∈A . 

6.4  Step 4 

A not too hard calculation shows that for any α ∈A  we have 

1−Ξ
Iα
n (Rn( f ))(z)

Ξ
Iα
n (Rn( f ))(z)

z
1− z

=
ℜ([cn

α ,x]; f qn
α

)

ℜ([x,dn
α ]; f qn

α

)
.
 

(1) 

On the other hand, from the above relation it follows 

ℜ([cn
α ,x]; f qn

α

)

ℜ([x,dn
α ]; f qn

α

)
= 1
mα exp(℘n

α (z)).
 

(2)

The relations (1) and (2) relations give us 

Ξ
Iα
n (Rn( f ))(z) =

zmn
α

(1− z)exp(℘n
α (z))+ zmn

α .
 

(3)
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Successively twice differentiating (3), we face to the expressions ℘n
α (z), z(1− z)(℘n

α (z))'  

and (1− z)(℘n
α (z))'' . Due to the estimations (1), (2) and (3) they are estimated with O(n−γ )  

and O(n−γ +1)  which imply the proofs of Theorems 5.1 and 5.2. 

7. Sketch of Proof of Theorem 5.3 

In fact the proof of Theorem 5.3 follows closely that of Cunha and Smania (2013). Following 
them we introduce a certain symbolic dynamics. We study properties of admissible cylinders. 
In the estimation process of 

(Rn( f )(x))''
(Rn( f )(x))'

dx
Iα
n
∫

we face to the difference of nonlinearity of f  on atoms of partition nℑ . Since the norm of this 

partition is exponential small and modulus of continuity of nonlinearity of f  is Pγ  we have 

f ''(xi )
f '(xi )

−
f ''( yi

β )
f '( yi

β )
≤CPγ (|ℑn |) ≤

C
nγ −1

for all i  and β ∈A . This finishes the proof. 

8. Singularity of Conjugacy 

Further, using above theorems we study the conjugacy of two g.i.e.m. f  and .g  Given two 

infinitely renormalisable g.i.e.m. f  and g , defined with the same alphabet A , we say that f  

and g have the same combinatorics if π ( f ) = π (g)  and the n -th renormalisation of f  and 

g  have the same type, for every n∈!.  It follows that π n( f ) = π n(g)  for every ,n  where 

π n( f )  is the combinatorial data of the n -th renormalisation of .f  The map f : S1→ S1  is 

a piecewise smooth homeomorphism on the circle if f  is homeomorphism, has jumps in the 

first derivative on finitely many points, that we call break points, and f  is smooth outside its 
break points. The set 

BPf = x ∈S1 : BPf :=
Df (x − 0)
Df (x + 0)

≠ 1
⎧
⎨
⎩

⎫
⎬
⎭

is called the set of break points f  and the number ( )fBP x  is called the break f  at x . 

Denote by BPf ={x1,...,xm}  and BPg ={y1,..., yn}. We say that two piecewise smooth 
homeomorphisms on the circle are break-equivalents if there exists a topological conjugacy 
h  such that
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h(BPf ) = BPg  

and

BPf (xi ) = BPg (h(xi )).

It is easy to see that if there is a 1C  conjugacy between f  and g  then f  and g  are break-
equivalents.

Theorem 8.1. Let f ,g ∈Zk
1+γ  be such that

i. f and g have the same combinatorics;
ii. f and g are not break-equivalents;

then the conjugating map h  between f  and g  is singular. 

This theorem extends the result of Cunha and Smania (2014). 

9. Sketch of Proof of Theorem 8.1 

The main approach for proving this theorem is to study the behaviour of sequence 

log
(RSK

n (g)(h(x)))'
(RSK

n ( f )(x))'
⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪n=1,2,...

and 

log
(RMS

n (g)(h(x)))'
(RMS

n ( f )(x))'
⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪n=1,2,...

where SKR  and MSR  are Sinai-Khanin and Mackay-Stark renormalisations respectively. 
Similar argument has been used by Herman (1979) for investigating conjugations between 
piecewise linear circle homeomorphisms with two break points and linear rotation. Denote 

by LSK
n ,MSK

n( )  and LMS
n ,MMS

n( )  n -th commuting pairs of Sinai-Khanin and Mackay-Stark 
renormalisations respectively. First we give a necessary condition for absolute continuity of 
conjugation as follows:

Let f  and g  have the same combinatorics. If the conjugation map h  between f  and g  
is absolute continuous then for all δ > 0  

lim
n→∞
l x : log(LSK

n (g)(h(x)))'− log(LSK
n ( f )(x))' > δ( ) = 0

and

lim
n→∞
l x : log(MSK

n (g)(h(x)))'− log(MSK
n ( f )(x))' > δ( ) = 0.
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Similar result is true for Mackay-Stark’s commuting pair under assumption of k -bounded 

combinatorics. Next we show that for any α ∈A  there exist the universal δ0 > 0  and Uα
n  

such that Uα
n ⊂ Iα

n  and 

log(LSK
n (g)(h(x)))'− log(LSK

n ( f )(x))' > δ0

and 

log(MSK
n (g)(h(x)))'− log(MSK

n ( f )(x))' > δ0

on the set

x ∈ f i(Uα
n )

i=0

kn
α

∪

where kn
α ≤ qn

α . Finally we show that, the Lebesgue measure of the set 

f i(Uα
n )

i=0

kn
α −1

∪
α∈A
∪

cannot tends to zero for sufficiently large .n  This contradicts to the above necessary condition 
for absolute continuity of conjugation.
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