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ABSTRACT 

In this paper, a theoretical and numerical study on the unsteady three-dimensional boundary 
layer flow of a viscous fluid past a permeable stretching/shrinking sheet is considered. Similarity 
transformation is used to reduce the governing system of nonlinear partial differential equations 
into a system of ordinary differential equations. These equations are then solved numerically by 
using the “bvp4c” function in MATLAB. The effects of the governing parameters, namely the 
unsteadiness parameter, the stretching/shrinking parameter, the suction parameter and the ratio 
of the surface velocity gradients on the skin friction coefficients, as well as the velocity profiles 
are presented and discussed. Multiple solutions are found for a certain range of the governing 
parameters. Stability analysis has been performed to determine which solution is stable and 
physically realisable.

Keywords: boundary layer; dual solutions; stability analysis; stretching/shrinking sheet; three-
dimensional unsteady flow

ABSTRAK

Dalam makalah ini, kajian secara teori dan berangka telah dilakukan bagi aliran lapisan 
sempadan tiga matra tak mantap bagi bendalir likat melepasi helaian telap meregang/mengecut. 
Penjelmaan keserupaan digunakan bagi menurunkan sistem menakluk persamaan pembezaan 
separa tak linear kepada sistem persamaan pembezaan biasa. Persamaan ini kemudiannya 
diselesaikan secara berangka dengan menggunakan fungsi “bvp4c” dalam perisian MATLAB. 
Kesan-kesan parameter menakluk, iaitu parameter ketidakmantapan, parameter meregang/
mengecut, parameter sedutan dan nisbah kecerunan halaju permukaan terhadap pekali geseran 
kulit dan profil halaju dibentang dan dibincangkan. Penyelesaian berganda ditemui bagi julat 
tertentu parameter menakluk. Analisis kestabilan dilakukan bagi menentukan penyelesaian 
manakah yang stabil dan memberi makna secara fizikal. 

Kata kunci: lapisan sempadan; penyelesaian dual; analisis kestabilan; helaian meregang/ 
mengecut; aliran tak mantap tiga matra 

1.	 Introduction 

The study of viscous flow and heat transfer due to a stretching sheet has many applications 
in industrial and manufacturing processes, such as in extrusion, wire drawing, hot rolling and 
others. Sakiadis (1961a, 1961b) was the first to consider the problem of boundary layer flow 
over a moving surface. Later, his work is verified by Tsou et al. (1967) and extended by Crane 
(1970) to a stretching plate. McLeod and Rajagopal (1987) discussed the uniqueness of the 
exact analytical solution presented by Crane (1970), while Gupta and Gupta (1977) extended 
Crane’s work by investigating the effect of heat and mass transfer over a stretching sheet 
subject to suction or blowing. The problem in Crane (1970) was extended by Wang (1984) 
to a three-dimensional flow due to a stretching flat surface. More studies regarding flow over 
a stretching sheet or surface can be found in the literature, such as those by Banks (1983), 
Rajagopal et al. (1984), Chen and Char (1988), Magyari and Keller (1999, 2000) and very 
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recently by Nadeem et al. (2014), Bhattacharyya and Layek (2014) and Mabood et al. (2015), 
among others.

Recently, the study of flow due to a shrinking sheet, where the velocity of the boundary is 
moving towards a fixed point, have become significantly important in the industry. This new 
type of flow is essentially a backward flow, as described by Goldstein (2006). Miklavcic and 
Wang (2006) were the first to investigate the viscous flow over a shrinking sheet, followed by 
Fang et al. (2009), who studied the viscous flow over an unsteady shrinking sheet with mass 
transfer. These authors have shown that from physical point of view, vorticity of the shrinking 
sheet is not confined within a boundary layer, and the flow is unlikely to exist unless adequate 
suction on the boundary is imposed. Later, the study regarding shrinking sheet was extended 
and investigated for various types of fluid and physical properties. On the other hand, Hayat 
et al. (2009) investigated the three-dimentional rotating flow induced by a shrinking sheet for 
suction, while Aman and Ishak (2010) studied the flow and heat transfer over a permeable 
shrinking sheet with partial slip. Recently, Rohni et al. (2014) considered the flow and heat 
transfer at a stagnation-point over an exponentially shrinking vertical sheet with suction, 
while Rahman et al. (2015) solved the problem of steady boundary layer flow of a nanofluid 
past a permeable exponentially shrinking surface with convective surface condition using 
Buongiorno’s model.

Besides Fang et al. (2009), all studies mentioned above considered the steady state 
problem, where the velocity and other properties such as pressure at every point do not depend 
upon time. Steady flow is preferred by engineers because it is easier to control. However, 
the study of unsteady boundary layer flow is much more important, because all boundary 
layer problems that occur in real-world practice are depending on time. Surma Devi et al. 
(1986) discussed the flow, heat and species transport due to the unsteady, three-dimensional 
flow caused the stretching of a flat surface. Wang (1989) investigated the exact solutions of 
the unsteady Navier-Stokes equation. The unsteady boundary layer flow due to a stretching 
surface in a rotating fluid has been studied by Nazar et al. (2004). Very recently, Roşca and 
Pop (2015) investigated the unsteady viscous flow over a curved stretching/shrinking surface 
with mass suction.

The purpose of this paper is to study the boundary layer flow due to the unsteady, three-
dimensional laminar flow of a viscous fluid over a permeable stretching/shrinking sheet. The 
governing partial differential equations are transformed into a system of ordinary differential 
equations by using an appropriate similarity transformation, and then solved numerically with 
“bvp4c” function in MATLAB. Stability analysis is performed to determine the stability of the 
multiple solutions obtained.

2.	 Governing Equations

We consider the unsteady three-dimensional boundary layer flow of a viscous fluid past a 
permeable stretching/shrinking flat surface. A set of coordinates ( , , )x y z  is measured normal 
to the sheet. The x- and y-coordinates are in the plane of the sheet, while the z-coordinate is 
perpendicularly measured to the shrinking surface. We assume that the flat surface is stretching/
shrinking continuously in both x- and y-directions with the velocities ( , ) ( , )wu x t u x t=  and 

( , ) ( , ),wv y t v y t= respectively. The mass flux velocity is written as 0 ( ),w w t=  where 0 ( ) 0w t <  
is for suction and 0 ( ) 0w t >  is for injection or withdrawal of the fluid. Under these assumptions 
and conditions, the governing boundary layer equations can be expressed as (see Surma Devi 
et al. (1986))
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0,u v w
x y z
∂ ∂ ∂

+ + =
∂ ∂ ∂  

(1) 

2

2 ,u u u u uu v w
t x y z z

ν∂ ∂ ∂ ∂ ∂
+ + + =

∂ ∂ ∂ ∂ ∂  
(2) 

2

2 ,v v v v vu v w
t x y z z

ν∂ ∂ ∂ ∂ ∂
+ + + =

∂ ∂ ∂ ∂ ∂  
(3) 

subject to the following initial and boundary conditions:

0

0 :  ( , , ) 0,  ( , , ) 0,  ( , , ) 0 for any , , ,

0 :  ( , ) ,  ( , ) ,  ( )   at 0,
1 1 1

( , , ) 0,   ( , , ) 0,   ( , , ) 0  as ,

w w

t u x y z v x y z w x y z x y z
wax byt u u x t v v y t w t z

t t t
u x y z v x y z w x y z z

λ λ
β β β

< = = =

≥ = = = = = =
− − −

→ → → →∞  

(4)

where u, v and w are the velocity components along the x-, y- and z-axes, respectively, a and b 
are positive constants, t is the time, β is the parameter showing the unsteadiness of the problem, 
v is the kinematic viscosity of the fluid and λ is the stretching (λ > 0) or shrinking parameter (λ 
< 0). 

We now introduce the following similarity variables:

( )( ),   ( ),   ( ) ( ) ,
1 1 1

/ ,
1

a x b y au f v g w f g
t t t

a z
t

νη η η κ η
β β β

νη
β

′ ′= = = − +
− − −

=
−  

(5)

where primes denote the differentiation with respect to η and /b aκ =  is the ratio of the 
surface velocity gradients along the y- and x-directions. Using the similarity variables (5), 
(1) is automatically satisfied, while Eqs. (2) and (3) are reduced to the following system of 
ordinary differential equations

( ) 2 0,
2

f f g f f M f fηκ  ′′′ ′′ ′ ′ ′′+ + − − + = 
   

(6) 

( ) 2 0,
2

g f g g g M g gηκ κ  ′′′ ′′ ′ ′ ′′+ + − − + = 
   

(7)

and the boundary conditions (4) are reduced to

(0) ,  (0) 0,  (0) ,  (0) ,
( ) 0,  ( ) 0 as ,

f S g f g
f g

λ λ
η η η

′ ′= = = =
′ ′→ = →∞  

(8)

where /M aβ=  is the unsteadiness parameter and 1/2
0 ( )(1 ) / ( )S w t t aβ ν= − −  is the surface 

mass transfer parameter with 0S >  for suction and 0S <  for injection. In this paper, we 
confine our attention here only to the case when 0.5κ =  and 0M <  (decelerated flow). 
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The quantities of physical interest are the local skin friction coefficients fxC  and ,fyC  
which are defined as

2 2

22 ,  ,wywx
fx fy

w w

C C
u v

ττ
ρ ρ

= =
 

(9) 

where wxτ  and wyτ  are the shear stresses in the x- and y-directions of the sheet, which are given 
by 

0 0

,  .wx wy
z z

u v
z z

τ µ τ µ
= =

∂ ∂   = =   ∂ ∂     
(10)

Substituting (5) into (10) and using Eq. (9), we obtain
1/2 1/2Re 2 (0),  Re 2 (0),x fx y fyC f C g′′ ′′= =  

(11)

where Re ( , ) /x w fu x t x ν=  and Re ( , ) /y w fv y t y ν=  are the local Reynolds numbers based on 
the velocities ( , )wu x t  and ( , ),wv y t  respectively. 

3.	 Stability Analysis

In the introduction section, we have mentioned the existence of dual solutions, which are 
categorised as upper branch for first solution, and lower branch for second solution. Weidman 
et al. (2006) and Roşca and Pop (2013) have shown in their papers that the second (lower 
branch) solutions are unstable, while the first (upper branch) solutions are stable and physically 
realisable. The stability of both branches can be determined by performing a stability analysis. 
This analysis has also been done by previous researchers, such as Merkin (1986), Weidman 
and Sprague (2011), Mahapatra and Nandy (2011), Nazar et al. (2014) and others.

Following Weidman et al. (2006), a new dimensionless time variable τ is introduced. The 
use of τ is associated with an initial value problem and is consistent with the question of which 
solution or branch will be obtained in practice (physically realisable).

With the introduction of τ and (5), we have

( ) ( ) ( ) ( )( ), ,   , ,   , , ,
1 1 1

/ ,   .
1 1

a x b y au f v g w f cg
t t t

a atz
t t

νη τ η τ η τ η τ
β β β

νη τ
β β

′ ′= = = − +
− − −

= =
− −  

(12)

Substituting (12) into (2) and (3), we obtain the following:

( )
23 2 2 2

3 2 2

1 0,
2 1

f f f f f ff g M
t

ηκ
η η η η η β η τ

  ∂ ∂ ∂ ∂ ∂ ∂
+ + − − + − =  ∂ ∂ ∂ ∂ ∂ − ∂ ∂     

(13) 

( )
23 2 2 2

3 2 2

1 0,
2 1

g g g g g gf g M
t

ηκ κ
η η η η η β η τ

  ∂ ∂ ∂ ∂ ∂ ∂
+ + − − + − =  ∂ ∂ ∂ ∂ ∂ − ∂ ∂     

(14)
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subject to the boundary conditions

( ) ( ) ( ) ( )

( ) ( )

0, , 0, 0, 0, , 0, ,

, 0, , 0 as .

f gf S g

f g

τ τ τ λ τ λ
η η

η τ η τ η
η η

∂ ∂
= = = =

∂ ∂
∂ ∂

→ → →∞
∂ ∂  

(15)

To test the stability of the solution 0( ) ( )f fη η=  and 0( ) ( )g gη η=  satisfying the boundary-
value problem (6)-(8), we write (see Weidman et al. (2006) and Roşca and Pop (2013))

0 0( , ) ( )  ( , ), ( , ) ( )  ( , ),f f e F g g e Gστ στη τ η η τ η τ η η τ− −= + = +  (16)

where σ is an unknown eigenvalue parameter, and ( , )F η τ  and ( , )G η τ  are small relative to 

0 ( )f η  and 0 ( ).g η  
Substituting (16) into Eqs. (13) and (14), we obtain the following linearised problem:

( ) ( ) ( )( )
3 2

0 0 0 03 2 2 1F F Ff g F G f f Mκ κ τ σ
η η η
∂ ∂ ∂′′ ′+ + + + − − +
∂ ∂ ∂  
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2 2
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2

F F FM Mη τ
η η η τ

 ∂ ∂ ∂
− − − + = ∂ ∂ ∂ ∂   

(17)

( ) ( ) ( )( )
3 2
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η η η
∂ ∂ ∂′′ ′+ + + + − − +
∂ ∂ ∂  

( )
2 2

2 1 0,
2
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η η η τ

 ∂ ∂ ∂
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(18)

subject to the boundary conditions

( ) ( ) ( ) ( )

( ) ( )

0, , 0, 0, 0, , 0, ,

, 0, , 0 as .

F GF S G

F G

τ τ τ λ τ λ
η η

η τ η τ η
η η

∂ ∂
= = = =

∂ ∂
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∂ ∂  

(19)

As suggested by Weidman et al. (2006), we investigate the stability of the steady flow 0 ( )f η  
and 0 ( )g η  by setting 0.τ =  Hence, 0( ) ( )F Fη η=  and 0( ) ( )G Gη η=  in Eqs. (17) and (18) 
identify the initial growth or decay of the solution (16). To test our numerical procedure, we 
have to solve the linear eigenvalue problem

( ) ( ) ( )0 0 0 0 0 0 0 0 0 0 02 0,
2

F f g F F G f f F M F Fηκ κ σ  ′′′ ′′ ′′ ′ ′ ′ ′′+ + + + − − − − = 
   

(20)

( ) ( ) ( )0 0 0 0 0 0 0 0 0 0 02 0,
2

G f g G F G g g G M G Gηκ κ κ σ  ′′′ ′′ ′′ ′ ′ ′ ′′+ + + + − − − + = 
   

(21)
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along with the following boundary conditions:

0 0 0 0

0 0

(0) 0,   (0) 0,   (0) 0,   (0) 0,
( ) 0,   ( ) 0  as .

F F G G
F Gη η η

′ ′= = = =
′ → → →∞  

(22)

For particular values of the governing parameters involved, such as M, S and λ, the stability 
of the corresponding steady flow solution 0 ( )f η  and 0 ( )g η  are determined by the smallest 
eigenvalue .σ  Solutions of the linear eigenvalue problem (20) and (21) give an infinite set of 
eigenvalues 1 2 3 ;σ σ σ< < <  if the smallest eigenvalue 1σ  is positive ( )1 0 ,σ ≥  then there 
is an initial decay of disturbances and the flow is stable, and if 1σ  is negative ( )1 0 ,σ <  then 
there is an initial growth of disturbances, which indicates that the flow is unstable. Harris et al. 
(2009) suggested that the range of possible eigenvalues can be obtained by relaxing a boundary 
condition on 0 ( )F η  or 0 ( ).G η  In this paper, we relax the condition 0 ( ) 0G η′ →  as η →∞  and 
for a fixed value of σ, we solve the system of equations (20) and (21) subject to the boundary 
conditions (22), along with the new boundary condition 0 (0) 1.G′′ =  

4.	 Results and Discussion

The system of nonlinear ordinary differential equations (6) and (7) subject to the boundary 
conditions (8) are solved numerically using the “bvp4c” function in MATLAB. This function 
has been introduced by Kierzenka and Shampine (2001) and Shampine et al. (2003) to solve 
a two-point boundary value problem for ordinary differential equations. The numerical results 
for the reduced skin friction coefficients obtained in this study are compared with those of 
Surma Devi et al. (1986) for validation. The comparisons, which are displayed in Table 1, 
are found to be in excellent agreement, and thus we are confident that the present numerical 
method is accurate.

Table 1: Numerical comparison with those of Surma Devi et al. (1986) by setting the following parameters: 
1, 0Sκ = =  and boundary conditions (0) 1,  (0) 0.5f g′ ′= =  

Surma Devi et al. (1986) Present study

M (0)f ′′− (0)g′′− (0)f ′′− (0)g′′−

1 1.3814 0.6261 1.3814 0.6261
0.5 1.2407 0.5480 1.2407 0.5480
0 1.0931 0.4652 1.0931 0.4652

-0.5 0.9430 0.3809 0.9430 0.3809
-1 0.7912 0.2956 0.7912 0.2956

Dual solutions in this study are obtained by setting 2 different initial guesses for the missing 
values of (0)f ′′  and (0).g′′  Table 2 displays both first (upper branch) and second (lower 
branch) solutions of (0)f ′′  and (0)g′′  for different values of M when 2.5,S = 1λ = −  and 

0.5.c =  From the table, it can be observed that the values of (0)f ′′  and (0)g′′  from the upper 
branch are decreasing with the decrease of M, up until they have reached zero and become 
negative. This implies that there is a velocity overshoot near the shrinking sheet with a higher 
velocity in the fluid than the wall velocity (Fang et al. (2009)). Meanwhile, different behaviour 
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can be seen for the lower branch, where the values keep decreasing, and then increasing as M 
is getting closer to ,cM  where cM  is a critical value of M. These kind of behaviour can also 
be seen in Figures 1 and 2. These figures also show that the solutions of (0)f ′′  and (0)g′′  
can be positive for both branches when the value of suction parameter S is small ( 2.4).S <  
Furthermore, it can also be seen that the solutions keep decreasing with the decrease of M and 
S.

Table 2: Dual solutions of (0)f ′′  and (0)g′′  for different values of M when 2.5, 1S λ= = −  and 0.5c =

Upper branch Lower branch

M (0)f ′′ (0)g′′ (0)f ′′ (0)g′′

0 1.7824 1.9493 0.8315 1.6452
-2 0.9787 1.2405 -0.5351 0.5270
-4 0.1010 0.4846 -1.4710 -0.3242
-6 -0.8830 -0.3362 -2.1985 -1.0453
-8 -2.2062 -1.3536 -2.5299 -1.5334

-8.1 -2.3969 -1.4741 -2.4212 -1.4876
-8.1008 (=Mc ) -2.4064 -1.4795 -2.4117 -1.4825

-4

-3

-2

-1

0

1

2

-9 -8 -7 -6 -5 -4 -3 -2 -1 0

f ''(0)

M

S = 2.35
S = 2.4
S = 2.5
S = 2.6

Mc = -0.5527

Mc = -1.6887

Mc = -8.1008

Figure 1: Variation of (0)f ′′  with M for different values of S when 0.5c =  and 1λ = −
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-2

-1

0

1

2

-9 -8 -7 -6 -5 -4 -3 -2 -1 0

g''(0)

M

S = 2.35
S = 2.4
S = 2.5
S = 2.6

Mc = -0.5527

Mc = -1.6887

Mc = -8.1008

Figure 2: Variation of (0)g′′  with M for different values of S when 0.5c =  and 1λ = −

Table 3: Dual solutions of (0)f ′′  and (0)g′′  for different values of M, S and λ when 0.5c =  

Upper branch Lower branch

λ M S (0)f ′′ (0)g′′ (0)f ′′ (0)g′′

1 -1 2.5 -2.7666 -2.6816 -7.8187 -2.1881
3 -3.2295 -3.1555 -10.1723 -2.6553
4 -4.1783 -4.1201 -16.4292 -3.5998

-3 2.5 -2.4512 -2.3578 -11.8784 -1.1936
3 -2.9505 -2.8708 -15.1199 -1.7673
4 -3.9541 -3.8930 -23.5231 -2.8671

-1 -1 2.5 1.3891 1.6004 0.0426 1.0214

3 2.2626 2.3825 -1.6230 1.6047
4 3.5113 3.5852 -6.0139 2.8919

-3 2.5 0.5502 0.8690 -1.0313 0.0835
3 1.8005 1.9423 -4.0940 0.4530
4 3.2210 3.3007 -11.0877 1.9915

Figures 1-4 represent the solution domain for Eqs. (6) and (7) with boundary conditions 
(8). From these figures, it can be seen that there are two (dual) solutions for each (0)f ′′  and 

(0),g′′  and they exist for a certain range of M and λ. When M and λ equal to a certain value, 
say cM M=  and ,cλ λ=  where cM  and cλ  are the critical values of M and λ, respectively, 
there is only one solution. There is no solution when the values of M and λ are less than their 
critical values, beyond which the boundary layer separates from the surface (which is known 
as boundary layer separation) and the solution based upon the boundary layer approximations 
are not possible. From these figures, we notice that the upper branch solutions are always 
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larger than the lower branch solutions for the same value of M and λ, which is consistent with 
the numerical results displayed in Tables 2 and 3.

Meanwhile, Table 3 displays both solutions of (0)f ′′  and (0)g′′  for different values of M, 
S and λ when 0.5.c =  It can be seen that the magnitude of solutions increase with the increase 

of S and decrease with the increase of .M  Table 3 also shows that dual solutions exist for 
both stretching and shrinking cases. This behaviour is also displayed in Figures 3 and 4, which 
illustrate the variation of (0)f ′′  and (0)g′′  with λ for different values of M when 0.5c =  and 

3.S =  These figures also show that the values of cλ  increase with the decrease of .M

-29

-26

-23

-20

-17

-14

-11

-8

-5

-2

1

4

-2 -1 0 1

f ''(0)

λ

Upper branch
Lower branch

λc = -1.5528

λc = -1.4530

M = -1, -3, -10

M = -1, -3, -10λc = -1.6243

Figure 3: Variation of (0)f ′′  with λ for different values of M when 0.5c =  and 3S =

-4

-3

-2

-1

0

1

2

3

4

-2 -1 0 1

g''(0)

λ

Upper branch
Lower branch

λc = -1.5528

λc = -1.4530

M = -1

λc = -1.6243

M = -3

M = -10

Figure 4: Variation of (0)g′′  with λ for different values of M when 0.5c =  and 3S =



Ezad Hafidz Hafidzuddin, Roslinda Nazar, Norihan Md Arifin & Ioan Pop

28

Table 4 displays the critical values of S ( )cS=  for several values of M when 0.5c =  and 

1.λ = −  We found that the values of cS  increase with the increase of .M  Together with 
Figures 3 and 4, we can conclude that the unsteadiness parameter M widen the range of λ and 
S for which solutions exist. Further, the velocity profiles ( )f η′  and ( )g η′  for some values 
of S when 1,M = − 1λ = −  and 0.5c =  are illustrated in Figures 5 and 6, respectively. The 
boundary layer thicknesses from both figures are seen to be smaller with higher values of 
S, which happened because suction reduces drag force to avoid boundary layer separation. 
We also notice that the boundary layer thickness for the lower branch solution is larger than 
the upper branch solution. Both of these profiles satisfy the far field boundary conditions (8) 
asymptotically, which support the validity of the numerical results obtained and the existence 
of the dual solutions shown in Figures 1-4 and Tables 1-3.

Table 4: Values of Sc for several values of M when 0.5c =  and 1λ = −  

M Sc

0 2.3014
-1 2.3738
-3 2.4338
-10 2.5147

Figure 5: Velocity profiles ( )f η′  for different values of S when 1,M = − 0.5c =  and 1λ = −
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Figure 6: Velocity profiles ( )g η′  for different values of S when 1,M = − 0.5c =  and 1λ = −

To determine the stability of the dual solutions obtained, a stability analysis is performed 
by determining an unknown eigenvalue σ on Eqs. (20) and (21) along with the boundary 
conditions (22). This analysis has been done by using the same numerical computation used in 
this study, which is the “bvp4c” function. The smallest eigenvalues σ for some values of M and 
S when 0.5c =  and 1λ = −  are presented in Table 5. From the table, it can be observed that 
the upper branch solutions have positive eigenvalues σ while the lower branch solutions have 
negative eigenvalues σ. Thus, we conclude that the first (upper branch) solution is stable and 
physically realisable while the second (lower branch) solution is not.

Table 5: Smallest eigenvalues σ  for several values of M and S when 0.5c =  and 1λ = −

M S σ (upper branch) σ (lower branch)

-1 2.38 0.1675 -0.1617
2.4 0.3514 -0.3270
2.5 0.8194 -0.7028

-3 2.44 0.2415 -0.2358
2.5 0.8146 -0.7548
2.6 1.3421 -1.1924

-10 2.52 0.3617 -0.3569
2.55 0.9406 -0.9091
2.6 1.4857 -1.4097

5.	 Conclusions

We have studied the problem of unsteady three-dimensional boundary layer flow of a 
viscous fluid past a permeable stretching/shrinking sheet. The governing system of nonlinear 
partial differential equations is reduced to a system of ordinary differential equations by 
using similarity transformation, and then solved numerically using the “bvp4c” function in 
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MATLAB. A comparison has been made with previous literature and it shows an excellent 
agreement. Dual solutions are found for both stretching and shrinking cases when the suction 
parameter 2.S >  The solutions for lower branch are always smaller than the upper branch. 
The magnitude of reduced skin friction coefficients are found to increase with the increase 
of the suction parameter and the decrease of the unsteadiness parameter. The boundary layer 
thicknesses are seen to be smaller with higher values of the suction parameter. A stability 
analysis has been performed to determine the stability of the dual solutions obtained, and it can 
be concluded that the first (upper branch) solution is stable and physically realisable, while the 
second (lower branch) solution is unstable.

Acknowledgements 

This work was supported by a research grant (Project Code: GUP-2013-040) from the 
Universiti Kebangsaan Malaysia.

References 

Aman F. & Ishak A. 2010. Boundary layer flow and heat transfer over a permeable shrinking sheet with partial slip. 
Journal of Applied Sciences Research 6(8): 1111–1115.

Banks W.H.H. 1983. Similarity solutions of the boundary-layer equations for a stretching wall. Journal de Mecanique 
Theorique et Appliquee 2: 375–392.

Bhattacharyya K. & Layek G.C. 2014. Magnetohydrodynamic boundary layer flow of nanofluid over an exponentially 
stretching permeable sheet. Physics Research International 2014: 1–12.

Chen C-K. & Char M-I. 1988. Heat transfer of a continuous, stretching surface with suction or blowing. Journal of 
Mathematical Analysis and Applications 135(2): 568–580.

Crane L.J. 1970. Flow past a stretching plate. Zeitschrift für angewandte Mathematik und Physik 21(4): 645–647.
Fang T-G., Zhang J. & Yao S.-S. 2009. Viscous flow over an unsteady shrinking sheet with mass transfer. Chinese 

Physics Letters 26(1): 014703.
Goldstein S. 2006. On backward boundary layers and flow in converging passages. Journal of Fluid Mechanics 

21(1): 33–45.
Gupta P.S. & Gupta A.S. 1977. Heat and mass transfer on a stretching sheet with suction or blowing. Canadian 

Journal of Chemical Engineering 55: 744–746.
Harris S.D., Ingham D.B. & Pop I. 2009. Mixed convection boundary-layer flow near the stagnation point on a 

vertical surface in a porous medium: Brinkman model with slip. Transport in Porous Media 77(2): 267–285. 
Hayat T., Abbas Z., Javed T. & Sajid M. 2009. Three-dimensional rotating flow induced by a shrinking sheet for 

suction. Chaos, Solitons & Fractals 39(4): 1615–1626.
Kierzenka J. & Shampine L.F. 2001. A BVP solver based on residual control and the Maltab PSE. ACM Transactions 

on Mathematical Software 27(3): 299–316.
Mabood F., Khan W.A. & Ismail A.I.M. 2015. MHD boundary layer flow and heat transfer of nanofluids over a 

nonlinear stretching sheet: A numerical study. Journal of Magnetism and Magnetic Materials 374: 569–576.
Magyari E. & Keller B. 1999. Heat and mass transfer in the boundary layers on an exponentially stretching continuous 

surface. Journal of Physics D: Applied Physics 32(5): 577–585.
Magyari E. & Keller B. 2000. Exact solutions for self-similar boundary-layer flows induced by permeable stretching 

walls. European Journal of Mechanics - B/Fluids 19(1): 109–122.
Mahapatra T.R. & Nandy S.K. 2011. Stability analysis of dual solutions in stagnation-point flow and heat transfer 

over a Power-law shrinking surface. International Journal of Nonlinear Science 12: 86–94.
McLeod J.B. & Rajagopal K.R. 1987. On the uniqueness of flow of a Navier-Stokes fluid due to a stretching 

boundary. Archive for Rational Mechanics and Analysis 98(4): 385–393.
Merkin J.H. 1986. On dual solutions occurring in mixed convection in a porous medium. Journal of Engineering 

Mathematics 20(2): 171–179. 
Miklavcic M. & Wang C.Y. 2006. Viscous flow due to a shrinking sheet. Quarterly of Applied Mathematics 64: 

283–290.
Nadeem S., Haq R.U. & Khan Z. 2014. Numerical study of MHD boundary layer flow of a Maxwell fluid past a 

stretching sheet in the presence of nanoparticles. Journal of the Taiwan Institute of Chemical Engineers 45(1): 
121–126. 



Stability analysis of unsteady three-dimensional viscous flow over a permeable stretching/shrinking surface 

31

Nazar R., Amin N. & Pop I. 2004. Unsteady boundary layer flow due to a stretching surface in a rotating fluid. 
Mechanics Research Communications 31(1): 121–128.

Nazar R., Noor A., Jafar K. & Pop I. 2014. Stability analysis of three-dimensional flow and heat transfer over a 
permeable shrinking surface in a Cu-water nanofluid. International Journal of Mathematical, Computational, 
Physical and Quantum Engineering 8(5): 776–782.

Rahman M.M., Rosca A.V. & Pop I. 2015. Boundary layer flow of a nanofluid past a permeable exponentially 
shrinking surface with convective boundary condition using Buongiorno’s model. International Journal of 
Numerical Methods for Heat and Fluid Flow 25(2): 299–319.

Rajagopal K.R., Na T.Y. & Gupta A.S. 1984. Flow of a viscoelastic fluid over a stretching sheet. Rheologica Acta 
23: 213–215.

Rohni A.M., Ahmad S. & Pop I. 2014. Flow and heat transfer at a stagnation-point over an exponentially shrinking 
vertical sheet with suction. International Journal of Thermal Sciences 75: 164–170.

Roşca A.V. & Pop I. 2013. Flow and heat transfer over a vertical permeable stretching/shrinking sheet with a second 
order slip. International Journal of Heat and Mass Transfer 60: 355–364.

Roşca N.C. & Pop I. 2015. Unsteady boundary layer flow over a permeable curved stretching/shrinking surface. 
European Journal of Mechanics - B/Fluids 51: 61–67.

Sakiadis B. 1961a. Boundary-layer behavior on continuous solid surfaces: I. Boundary-layer equations for two-
dimensional and axisymmetric flow. AIChE Journal 7: 26–28.

Sakiadis B. 1961b. Boundary-layer behavior on continuous solid surfaces: II. The boundary layer on a continuous 
flat surface. AIChE Journal 7(2): 221–225.

Shampine L.F., Gladwell I. & Thompson S. 2003. Solving ODEs with MATLAB. Cambridge University Press.
Surma Devi C.D., Takhar H.S. & Nath G. 1986. Unsteady, three-dimensional, boundary-layer flow due to a stretching 

surface. International Journal of Heat and Mass Transfer 29(12): 1996–1999.
Tsou F.K., Sparrow E.M. & Goldstein R.J. 1967. Flow and heat transfer in the boundary layer on a continuous 

moving surfaces. International Journal of Heat and Mass Transfer 10: 219–235.
Wang C.Y. 1984. The three-dimensional flow due to a stretching flat surface. Physics of Fluids 27(8): 1915–1917. 
Wang C.Y. 1989. Exact solutions of the unsteady Navier-Stokes equations. Applied Mechanics Reviews 42(11S): 

S269–S282.
Weidman P.D., Kubitschek D.G. & Davis A.M.J. 2006. The effect of transpiration on self-similar boundary layer 

flow over moving surfaces. International Journal of Engineering Science 44(11-12): 730–737.
Weidman P.D. & Sprague M.A. 2011. Flows induced by a plate moving normal to stagnation-point flow. Acta 

Mechanica 219(3-4): 219–229.

1School of Mathematical Sciences
Faculty of Science & Technology
Universiti Kebangsaan Malaysia
43600 UKM Bangi
Selangor DE, MALAYSIA
E-mail: ezadhafidz@gmail.com, rmn@ukm.edu.my*

2Department of Mathematics
Universiti Putra Malaysia
43400 UPM Serdang,
Selangor DE, MALAYSIA
E-mail: norihanarifin@yahoo.com

3Department of Mathematics
Babeş-Bolyai University
R-400048 Cluj-Napoca
ROMANIA
E-mail: popm.ioan@yahoo.co.uk 

*Corresponding author


