Radar return reduction for wind turbines using bump structures

Shyh, Kuang Ueng and Yao, Hong Chan and Wei, Hsien Lu and Heng, Wen Chang (2015) Radar return reduction for wind turbines using bump structures. Sains Malaysiana, 44 (12). pp. 1701-1706. ISSN 0126-6039

[img]
Preview
PDF
1MB

Official URL: http://www.ukm.my/jsm/english_journals/vol44num12_...

Abstract

Wind turbines are massive electrical structures. They produce large returns when illuminated by radar waves. These scatterings have a great impact on the operation of surveillance, air traffic control and weather radars. This paper presents two geometric modelling methods for reshaping wind turbine towers so that the Radar Cross Section (RCS) of wind turbines is reduced. In the proposed reshaping methods, bump structures are created on the surface of the conventional cylinder wind turbine tower. When a reshaped tower is illuminated by radar waves, the bump structures scatter incident radar waves into insignificant directions so that the strength of back-scattering is declined and the RCS of the wind turbine is decreased. The test results confirmed that the proposed methods significantly reduce bi-static RCS values of wind turbines. The proposed reshaping methods are practical, flexible and effective in alleviating the scatterings of wind turbines.

Item Type:Article
Keywords:Radar cross section; reshaping method; stealthy technology; wind turbine
Journal:Sains Malaysiana
ID Code:9491
Deposited By: ms aida -
Deposited On:01 Feb 2016 06:58
Last Modified:14 Dec 2016 06:50

Repository Staff Only: item control page