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Orderings a Class of Unicyclic Graphs with Respect to 
Hosoya and Merrifield-Simmons Index

(Tertib Kelas Graf Unisiklik Indeks Hosoya dan Merrifield-Simmons) 

WANG YAN-FENG* & MA NING

ABSTRACT

Hosoya and Merrifield-Simmons index were the two valuable topological indices in chemical graph theory. The Hosoya 
and Merrifield-Simmons index of the class of unicyclic graphs G(k) were investigated, according to the distance between 
u and v on Cm, their orderings with respect to these two topological indices were obtained.
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ABSTRAK

Indeks Hosoya dan Merrifield - Simmons adalah dua indeks topologi penting dalam teori graf kimia. Indeks Hosoya dan 
Merrifield - Simmons daripada kelas graf unisiklik G(k) dikaji mengikut jarak antara u dan v ke atas Cm, tertib mereka 
mengikut kedua-dua indeks topologi diperoleh.

Kata kunci: Graf unisiklik; indeks Hosoya; indeks Merrifield-Simmons; tertib

INTRODUCTION

The Hosoya index of a graph was introduced by Hosoya in 
1971 and was applied to correlations with boiling points, 
entropies, calculated bond orders, as well as for coding of 
chemical structures, denoted by μ(G), μ(G) is equal to the 
total number of matchings of G. The Merrifield-Simmons 
index was first introduced by Prodinger and Tichy in 1982 
and this index is called Fibonacci number of a graph there, 
denoted by σ(G), σ(G) is equal to the total number of the 
independent sets of G. The Merrifield-Simmons index 
is one of most popular topological indices in chemistry, 
which was extensively studied in a monograph (Merrifield 
& Simmons 1989). Merrifield and Simmons showed 
the correlation between this index and boiling points. 
For detailed information on the chemical applications, 
please refer to Gutman and Polansky 1986, Merrifield 
and Simmons 1989 and Trinajstic 1992). Several papers 
deal with the characterization of the extremal graphs with 
respect to these two indices in several given graph classes. 
Usually, acyclic graphs, unicyclic graphs and trees are of 
major interest (Wagner et al. 2007; Yali et al. 2008; Zheng 
et al. 2008; Ziwen et al. 2011). In this paper, we determined 
a class of unicyclic graphs G(k) and also obtain the ordering 
of Hosoya index and Merrifield-Simmons index on the 
unicyclic graphs.
	 Let G = (V, E) be a graph with the vertex set V(G) and 
edge set  E(G).  If W ⊆ V(G),  we denote by G – W the 
subgraph of G obtained by deleting the vertices of W and 
the edges incident with them. Similarly, if E' ⊆ E(G), we 
denote by G – E' the subgraph of G obtained by deleting 
the edges of E'. If  W = {v} and E' = {uv},  we write G – v 

and G – uv instead of G – {v} and G – {uv}, respectively, 
NG(v) denotes the set of vertices in G which are adjacent to 
the vertex v and let NG[v] = {v} ∪ NG (v). We denote by Pn 
and Cn the path and the cycle on n vertices, respectively. We 
denote the sequence of Fibonacci numbers by fn, i.e. f0 = 0, 
f1 = 1 and fn+1 = fn + fn–1, for n ≥ 1.  fn is extended to negative 
values of n via Bennet’s formula  where 

  Analogously, the Lucas numbers are denoted by 

ln, i.e. l0 = 2, l1 = 1, ln+1 = ln +1n–1 and ln = φn + (–φ)–n), for 
n ≥ 1. Therefore, for n ≥ 1, we have fn–1 + fn+1 = ln and ln–1 

+ ln+1 = 5fn. Other undefined notation may refer to Bondy 
and Murty 1976 and Ser et al. 2014. 
	 G(k) represents a class of unicyclic graphs consisting 
of a ring of Cm and two n order road Pn, two contact among 
the two road and Cm, respectively, for u and v and d(u, v) 
= k (Figure 1).

METHODS

According to the definitions of the Merrifield-Simmons 
index and Hosoya index, we immediately get the following 
results.

Lemma 1   Let G be a simple graph and v ∈ V(G), uv ∈ 
E(G) (Prodinger & Tichy 1982)
then

(i)	 μ(G) = μ(G – uv) + μ(G – u –v); 

(ii)	 μ(G) = μ(G – v) + 
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Lemma 2   Let G be a simple graph and u, v ∈ V(G), uv ∈ 
E(G) (Prodinger & Tichy 1982)
then

(i)	 σ(G) = σ(G – v) + σ(G – NG[v]);

(ii)	 σ(G) = σ(G) = σ(G – uv) – σ(G – (NG[u] ∪ NG[v])).	

Lemma 3   If G1, G2, …, Gk are the components of a graph 
G (Prodinger & Tichy 1982)
we have 

(i)	

(ii)	  

Lemma 4	 μ(Pn) = fn+1and σ(Pn) = fn+2 for any n ∈ N 
(Prodinger & Tichy 1982).

Lemma 5	 μ(Cn) = fn+1 + fn–1 and σ(Cn) = fn+1 + fn–1 for any 
n ≥ 3 (Prodinger & Tichy 1982).

Lemma 6	 For any m ≥ n, we have fm fn =  (lm+n – (–1)n

lm–n) (Wagner 2007).

RESULTS AND DISCUSSION

Theorem 1 Let G(k)  be the graph shown in Figure 1, 

where 1 ≤ k ≤ , then

μ(G(1)) > μ(G(3)) > … > μ(G( )) > … > μ(G(4)) 

> μ(G(2)).

Proof.   By Lemma 1(i). Lemma 3. Lemma 4 and Lemma 
5, we have μ(G(k)) = μ(G(k) – ua1) + μ(G(k) – u – a1)

=	μ(G(k)) = ua1 – vb1) + μ(G(k) – ua1 – v – b1) + μ(G(k)

	 – u – a1 – vb1) + μ(G(k) – u – a1 – v – b1)

= (fm+1 + fm–1).  + 2fn fn+1 fm + fk fm–k

	 Analogously, we have 

μ(G(k + 1)) = (fm+1 + f m–1). + 2fn fn+1 fm + fk+1fm–k–1

μ(G(k+2)) = (fm+1 + fm–1).  + 2fn fn+1 fm + fk+2 fm–k–2

	 It is easy to see

μ(G(k)) – μ(G(k + 1)) = . (fk fm–k – fk+1 fm–k–1)

μ(G(k)) – μ(G(k + 2)) = .(fk fm–k – fk+2 fm–k–2)

	 By Lemma 6, we have 

fk fm–k – fk+1 fm–k–1 =  (–1)k+1(lm–2k + lm–2k–2) = (–1)k+1 fm–2k–1

fk fm–k – fk+2 fm–k–2 =  (–1)k+1(lm–2k – lm–2k–4) = (–1)k+1 fm–2k–2

	 Hence, we have

μ(G(k)) – μ(G(k + 1)) = (–1)k+1  . fm–2k–1

and

μ(G(k)) – μ(G(k + 2)) = (–1)k+1  . fm–2k–2.

	 Then if k ≡ 0(mod 2), μ(G(k)) < μ(G(k+1)), and 
μ(G(k)) < μ (G(k+2)); if k = 1(mod 2), μ (G(k+1)), and 
μ(G(k)) > μ(G(k+2)).

Therefore,  

μ(G(1)) > μ(G(3)) > … > μ(G( )) > … > μ(G(4)) 

> μ(G(2)).

	 This completes the proof of Theorem 1.

Theorem 2 Let G(k) be the graph shown in Figure 1, where 

1 ≤ k ≤ , then

σ(G(1) < σ(G(3)) < … < σ(G( )) < … < σ(G(4)) 

< σ(G(2)).

Proof.  By Lemma 2(i). Lemma 3. Lemma 4 and Lemma 
5, we have σ(G(k)) =  σ(G(k) – u) + σ(G(k) – NG(k)[u])

=	σ(G(k) – u – v) + σ(G(k) – u – NG(k)–u[v]) + σ(G(k) 

	 – NG(k)[u] – v) + σ(G(k) – NG(k)[u] – NG(k) –NG(k)[u][v])

=	  fk+1 + fm–k+1+ 2fn+2 fn+1 fk fm–k +  fk–1 fm–k–1

FIGURE 1. Unicyclic graph G(k)
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	 Analogously, we have 

σ(G(k + 1)) =  fk+2 fm–k+ 2fn+2 fn+1 fk+1 fm–k–1 +  fk fm–k–2

σ(G(k+2)) =  fk+3 fm–k–1 + 2fn+2 fn+1 fk+2 fm–k–2 +  fk+1 fm–k–3

	 It is easy to see

σ(G(k+1)) – σ(G(k + 1)) =	 . (fk+1 fm–k+1 – fk+2 fm–k)
		  +2fn+1 fn+2.(fk fm–k – fk+1 fm–k–1)
		  +  .(fk–1 fm–k–1 – fk fm–k–2)

and

σ(G(k)) – σ(G(k + 2)) = . (fk+1 fm–k+1 – fk+3 fm–k–1)
		  +2fn+1 fn+2.(fk fm–k – fk+2 fm–k–2)
		  +  .(fk–1 fm–k–1 – fk+1 fm–k–3)

	 By Lemma 6, we have 

fk+1 fm–k+1 – fk+2 fm–k = (–1)k+2 (lm–2k + lm–2k–2) = (–1)k+2 fm–2k–1

fk  fm–k – fk+1 fm–k–1 = (–1)k+1 (lm–2k + lm–2k–2) = (–1)k+1 fm–2k–1

fk–1 fm–k–1 – fk fm–k–2 = (–1)k (lm–2k + lm–2k–2) = (–1)k fm–2k–1

fk+1 fm–k+1 – fk+3 fm–k–1 = (–1)k+2 (lm–2k – lm–2k–4) = (–1)k+2 fm–2k–2

fk  fm–k – fk+2 fm–k–2 = (–1)k+1 (lm–2k + lm–2k–4) = (–1)k+1 fm–2k–2

fk–1 fm–k–1 – fk+1 fm–k–3 = (–1)k (lm–2k + lm–2k–4) = (–1)k fm–2k–2

	 Hence, we have

σ(G(k)) – σ(G(k + 1)) =	(–1)k+2  fm–2k–1 + (–1)k+1. 

			   2fn+1 fn+2 fm–2k–1 + (–1)k  fm–2k–1
	
		  =	(–1)k fm–2k–1.( – 2fn+1 fn+2 + )

		  =	(–1)k fm–2k–1.(fn+2 – fn+1)
2

		
		  =	(–1)k  fm–2k–1.

and

σ(G(k)) – σ(G(k + 2)) =	(–1)k+2  fm–2k–2 + (–1)k+1. 

			   2fn+1 fn+2 fm–2k–2 + (–1)k  fm–2k–1
	
		  =	(–1)k fm–2k–2.( – 2fn+1 fn+2 + )

		  =	(–1)k fm–2k–2.(fn+2 – fn+1)
2

		
		  =	(–1)k  fm–2k–2.

	 Then if k ≡ 0(mod 2), σ(G(k)) > σ(G(k + 1)) and  
σ(G(k)) > σ(G(k + 2)); if k ≡ 1(mod 2), σ(G(k)) < σ(G(k + 
1)), and σ(G(k)) < σ(G(k + 2)).
	
Therefore,

σ(G(1)) < σ(G(3)) < … < σ(G(  )) < … < σ(G(4)) 
< σ(G(2)).

CONCLUSION

This completes the proof of Theorem 2.
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