Culture of the Calanoid Copepod, *Acartia erythraea* and Cyclopoid Copepod, *Oithona brevicornis* with Various Microalgal Diets

(Kultur Kopepod Kalanoid, *Acartia erythraea* dan Kopepod Siklopoid, *Oithona brevicornis* dengan Pelbagai Diet Mikroalga)

MAYALAGU RAJKUMAR & MOHAMMAD MUSTAFIZUR RAHMAN

ABSTRACT

Two experiments were conducted to develop *Acartia erythraea* and *Oithona brevicornis* cultures: The performance of five microalgal diets to produce nauplii, copepodites and adults of *A. erythraea*; and the performance of the same diets to produce nauplii, copepodites and adults of *O. brevicornis*. The five different microalgal diets were *Isochrysis galbana* (IG), *Chaetoceros affinis* (CA), *Chlorella marina* (CM), *Nannochloropsis oculata* (NO) and mixed algae (mixture of IG, CA, CM and NO at an equal abundance to provide the exact cell density). The results indicated that the abundance of both *A. erythraea* and *O. brevicornis* was higher in tanks supplied with IG and mixed algae than the tanks supplied with CA, CM and NO. IG and mixed algal diets were statistically similar on the mean abundance for both *A. erythraea* and *O. brevicornis*. The maximum production of *A. erythraea* nauplii was observed on day 12 of culture period and the nauplii production decreased from day 13 onwards. The mean abundance of *A. erythraea* copepodites and adults increased along with time up to the end of the culture period. In the case of *O. brevicornis* nauplii, the maximum abundance was observed on day 9 day of culture period and the nauplii production decreased from day 10 onwards. The mean abundance of *O. brevicornis* copepodites and adults increased gradually from the beginning to the end of the culture period. Under the experimental conditions of this study, both IG and mixed algal diets can be recommended for the best growth performance of *A. erythraea* and *O. brevicornis*.

Keywords: Acartia erythraea; calanoid copepod; cyclopoid copepod; microalgal diet; Oithona brevicornis

ABSTRAK

Kata kunci: Acartia erythraea; diet mikroalga; kopepod kalanoid; kopepod siklopoid; Oithona brevicornis

INTRODUCTION

The larvae of many fish species across all ecosystems rely principally on live animals for their nutrition. Therefore, identifying and evaluating suitable live feeds are fundamental for maximizing survival and growth of fish larvae for aquaculture. Among various live feeds, rotifers have been used as a first feed for most fish larvae for a long time as they can generally be cultured in large quantity and high density. However, many studies have suggested some live feeds such as rotifers or *Artemia* are not suitable as a first diet for the early larval stage of many fish (Drillet et al. 2008; Lee et al. 2005; Rajkumar & Kumaraguru Vasagam 2006). There are some evidences that some species of calanoid and cyclopoid copepods are more suitable than rotifers or *Artemia* (Drillet et al. 2011; Stottrup 2006). Drillet et al. (2011) and Puello-Cruz et al. (2009) observed that the nauplii of *Acartia* spp. (calanoid copepods) are more suitable than rotifers or *Artemia* for
The samples of microalgal species \textit{Oithona brevicornis} study was to assess effects of these different microalgal combined under laboratory condition. The objective of this affinis diets namely \textit{A. erythraea} 2010). The present paper describes a study of culturing Zeng 2008; Rahman & Meyer 2009; Rahman & Verdegem 2009). However, the food preference for microalgal by providing various phytoplanktons for food (Buttino et al. 2009; Rahman et al. 2010, 2008a, 2008b). Many scientists their growth, survival and production (Puello-Cruz et al. 2009). According to Stottrup (2006), they are ideal supplement to the traditional live feed during the larval stages for many fishes. Unfortunately, the culture technology of \textit{Acartia} spp. (calanoid copepod) and \textit{Oithona} spp. (cyclopoid copepod) is not well developed, though both are likely very good candidates for studies on the development of culture technology.

Many copepods are filter-feeders, and they feed primarily on phytoplankton. However, the information regarding their food preference is insufficient for batch culture production. Suitable microalgal diets may improve their growth, survival and production (Puello-Cruz et al. 2009; Rahman et al. 2010, 2008a, 2008b). Many scientists have attempted to culture different species of copepods by providing various phytoplanktons for food (Buttino et al. 2009). However, the food preference for microalgal species by different copepods is often species specific and can also vary with their developmental stage and availability of preferred natural food. Optimising copepod diets to meet their preferences can influence their growth, egg production and success of egg hatching (Milone & Zeng 2008; Rahman & Meyer 2009; Rahman & Verdegem 2010). The present paper describes a study of culturing \textit{A. erythraea} and \textit{O. brevicornis} using various microalgal diets namely \textit{Isochrysis galbana} (IG), \textit{Nannochloropsis oculata} (NO), \textit{Chlorella marina} (CM) and \textit{Chaetoceros affinis} (CA) and then one with all the micro-alagal species combined under laboratory condition. The objective of this study was to assess effects of these different microalgal diets on the culture performance of \textit{Acartia erythraea} and \textit{Oithona brevicornis}.

\textbf{MATERIALS AND METHODS}

The samples of microalgal species IG, NO, CA and CM were collected from the Central Institute of Brackishwater Aquaculture, Chennai and Central Marine Fisheries Research Institute, Cochin, India for microalgal culture. All the microalgal species were cultured with f/2 medium at 28°C. The salinity and light regimes were maintained 30% and 14 l: 10 D, respectively. The algae were harvested during cell abundance of 30,000 cells/mL. The samples of \textit{A. erythraea} and \textit{O. brevicornis} samples were obtained using a plankton net (mesh size 158 μm; opening diameter 0.35 m) from the Coleroon waters during early morning of the full moon phase. After collection, the adult copepods and later-stage copepodites of \textit{A. erythraea} and \textit{O. brevicornis} were isolated by screening. Nauplii were isolated by 190 μm mesh screen and copepodites were isolated by a 500 μm mesh screen (Schipp et al. 1999). The remaining were adult copepods. The different copepod stages were confirmed under a microscope. The counting was performed in a S-R (Sedgewick Rafter) cell under a microscope. The large copepodites and adults of copepods were used for the stock culture, which was maintained in two separate flat-bottomed rectangular fiberglass tanks filled with vigorously aerated seawater that was filtered with \textit{UV} at 200 L per min. The diameter and height of each tank were 550 and 850 mm, respectively. Similar tanks were also used for the experiments. Two experiments were conducted: The effects of five microalgal diets on nauplii, copepodites and adults of \textit{A. erythraea}; and the effects of the same diets to produce nauplii, copepodites and adults of \textit{O. brevicornis}. The abundance of algae in each microalgal diet was 30,000 cells mL-1.

A total of 15 fiber glass tanks (five microalgal diets with three replications) were used in each experiment. A membrane filter (pore size more than 1 μm) was used. The adult stocking abundance of \textit{A. erythraea} and \textit{O. brevicornis} in the experimental tanks were 307 and 352, respectively. During the rearing period, salinity, temperature, dissolved oxygen (DO), and pH were maintained at between 30 and 34°C, 28 and 32°C, 5 and 6.8 mL L-1 and 7 and 8.5, respectively. The culture periods of \textit{A. erythraea} and \textit{O. brevicornis} were 14 days and 10 days, respectively. At the end of the culture period, \textit{A. erythraea} and \textit{O. brevicornis} were harvested by a gentle siphoning.

All the data were statistically analyzed through the one-way ANOVA (at \textit{p}<0.05 level of significance) after checking for normal distribution and homogeneity of variance. Statistical package SPSS (version 17) was used to analyze all the data. If there was any significant effect (\textit{p}<0.05), the mean differences were analyzed through Tukey test.

\textbf{RESULTS}

\textbf{EFFECTS OF MICROALGAL DIETS ON \textit{A. ERYTHRAEA} CULTURE}

Microalgal diets significantly affected the mean abundance of nauplii, copepodites and adults of \textit{A. erythraea} (\textit{p}<0.05).
Over a 14-day operation, the highest mean abundance of nauplii, copepodites and adults of *A. erythraea* was observed in tanks supplied with IG and mixed algae and followed by the tanks supplied with CM and CA (Table 1). The lowest average abundance of nauplii, copepodites and adults of *A. erythraea* was observed in tanks supplied with NO. Mean abundance of nauplii, copepodites and adults of *A. erythraea* was changed significantly (*p*<0.05) over time, though the changing trends were significantly different in different microalgal feed tanks (Table 1; Figure 1). The maximum production of nauplii was attained on day 12 of culture and the nauplii production decreased from day 13 onwards. The mean abundance of copepodites and adults of *A. erythraea* increased with increasing time. The maximum mean abundance of copepodites and adults of *A. erythraea* was observed on day 14 of culture (Figure 1).

EFFECTS OF MICROALGAL DIETS ON *O. BREVICORNIS* CULTURE

The mean abundance of *O. brevicornis* nauplii was statistically similar (*p*>0.05) in all microalgal feed tanks, while mean abundance of copepodites and adults of *O. brevicornis* was statistically different (*p*<0.05) in different microalgal feed tanks (Table 1). Over a 10-day culture period, the overall highest mean abundance of copepodites and adults of *O. brevicornis* was observed in tanks supplied with IG and mixed algae. The mean abundance of copepodites and adults of *O. brevicornis* was statistically similar in tanks supplied with CM, CA and NO. Mean abundance of nauplii, copepodites and adults of *O. brevicornis* changed significantly (*p*<0.05) over time, but the changing trends were statistically similar (*p*>0.05) in all the microalgal feed tanks (Table 1). The maximum abundance of nauplii was attained on day 9 of culture, and it was noticed that the nauplii production decreased from day 10 onwards (Figure 2). The mean abundance of copepodites and adults of *O. brevicornis* increased gradually from the beginning to the end of the culture period.

Table 1. Effects of different microalgal diets on the mean abundance (individual L\(^{-1}\)) of adults, copepodites and nauplii of *A. erythraea* and *O. brevicornis* in tanks based on repeated measure one-way ANOVA

<table>
<thead>
<tr>
<th>Stage</th>
<th>Treatment</th>
<th>Time</th>
<th>Treatment x Time</th>
<th>IG</th>
<th>CM</th>
<th>CA</th>
<th>NO</th>
<th>Mixed algae</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acartia erythraea</td>
<td>Nauplii</td>
<td>**</td>
<td>**</td>
<td>1741 ± 245(^a)</td>
<td>1637 ± 215(^b)</td>
<td>1641 ± 237(^b)</td>
<td>1467 ± 209(^a)</td>
<td>1749 ± 245(^a)</td>
</tr>
<tr>
<td></td>
<td>Copepodites</td>
<td>**</td>
<td>**</td>
<td>591 ± 106(^b)</td>
<td>545 ± 99(^a)</td>
<td>547 ± 95(^b)</td>
<td>434 ± 82(^c)</td>
<td>597 ± 107(^b)</td>
</tr>
<tr>
<td></td>
<td>Adults</td>
<td>**</td>
<td>**</td>
<td>420 ± 61(^a)</td>
<td>361 ± 53(^b)</td>
<td>357 ± 55(^c)</td>
<td>332 ± 52(^c)</td>
<td>435 ± 62(^c)</td>
</tr>
<tr>
<td>Oithona brevicornis</td>
<td>Nauplii</td>
<td>ns</td>
<td>**</td>
<td>1688 ± 244</td>
<td>1679 ± 243</td>
<td>1709 ± 243</td>
<td>1667 ± 240</td>
<td>1716 ± 251</td>
</tr>
<tr>
<td></td>
<td>Copepodites</td>
<td>**</td>
<td>**</td>
<td>395 ± 78(^c)</td>
<td>343 ± 72(^b)</td>
<td>389 ± 76(^c)</td>
<td>386 ± 76(^b)</td>
<td>403 ± 79(^c)</td>
</tr>
<tr>
<td></td>
<td>Adults</td>
<td>*</td>
<td>**</td>
<td>241 ± 41(^c)</td>
<td>237 ± 40(^b)</td>
<td>238 ± 38(^b)</td>
<td>238 ± 40(^b)</td>
<td>243 ± 41(^c)</td>
</tr>
</tbody>
</table>

Value are expressed as mean ± SE of three replicates in each group. ANOVA was followed by Tukey test if any effect is significant. Mean values in the same row with uncommon superscript are significantly different (*p*<0.05). *, ** and ns indicate *p*<0.05, *p*<0.005 and not significantly different, respectively.
of copepods. The performance of a diet also depends on its digestibility and composition (Rajkumar et al. 2013; Siddik et al. 2015; Wu et al. 2015). Thus, the low performance of CA, CM and NO mono-algal diets might be explained by the toughness and poor digestibility of their cell wall (Payne & Rippingale 2000).

In this study, the effects of the mono-algal IG diet were similar to the effects of the mixed algal diet on nauplii, copepodites and adults of copepod production. Our result of the effects of mixed algal diet on nauplii, copepodites and adults of copepod production are in agreement with the results of Kleppel and Burkart (1995) and Puello-Cruz et al. (2009). They concluded that mixed algal feed is better than mono-algal feed for copepods, because a mono-algal feed may not fulfill all of its nutritional requirements. Apart from the IG diet, it is also likely that the three other mono-algal feeds did not meet the nutritional requirement of the copepods because of their inadequate quantity of essential nutrients. However, the mixed diet likely fulfilled their nutritional requirements (Rahman & Mayer 2009; Rahman

![Figure 1](image1.png)

FIGURE 1. Interaction effects of treatment (microalgal diets) and time (days) on the mean production of adults, copepodites and nauplii of *A. erythraea*

![Figure 2](image2.png)

FIGURE 2. Temporal mean production of adults, copepodites and nauplii of *O. brevicornis*
In the present study, we recorded the maximum density of *A. erythraea* with 4583 nauplii, 2097 copepodites and 1429 adults per litre while the maximum density of *O. brevicornis* was 4211 nauplii, 1249 copepodites and 710 adults per litre. The recorded maximum density of *A. erythraea* and *O. brevicornis* in the present study exceeded the maximum density of a temperate water species *Acartia* sp. (Ohno & Okamura 1988). Our findings concur with Rajkumar et al. (2004), who recorded a maximum 4276 nauplii, 2063 copepodites and 1420 adults of *A. clausi* per litre of water supplying a mix microalgal diet containing *CM, N. salina* and IG at an equal ratio.

The growth of copepods greatly depends on temperature and microalgal diet (Drillet et al. 2011; Milione & Zeng 2008). In the present study, we observed the highest nauplii abundance at day 12 for *A. erythraea* and day 9 for *O. brevicornis* by maintaining temperature between 28 and 32°C. However, the effects of temperature on the *A. erythraea* and *O. brevicornis* growth are not well understood. Therefore, more research is needed to elucidate the optimum temperature for the best growth of this two copepod species. In conclusion, both the IG and mixed algal diets had similar effects on the growth of *A. erythraea* and *O. brevicornis*. Under the experimental conditions of this study, both the IG and mixed algal diets can be recommended for the best growth performance of *A. erythraea* and *O. brevicornis*.

REFERENCES

