On the second Hankel determinant of some analytic functions

Thomas, D. K. and Verma, Sarika (2015) On the second Hankel determinant of some analytic functions. Journal of Quality Measurement and Analysis, 11 (2). pp. 11-16. ISSN 1823-5670

[img] PDF
Restricted to Registered users only

88kB

Official URL: http://www.ukm.my/jqma/jqma11_2a.html

Abstract

Let the function f be analytic in zD  z : z 1 and be given by   2 n . n n f z z az      For 0   1, denote by V   and U  , the sets of functions analytic in D, satisfying         '' Re 1 ' 1 0 ' zf z f z f z                   and         ' Re 1 0 f z zf z z fz            respectively, so that f V   zf 'U  . We give sharp bounds for the Hankel determinant 2 2 2 4 3 H  a a  a for f V   and f U  .

Item Type:Article
Keywords:Univalent functions; Starlike and convex functions; Hankel determinant
Journal:Journal of Quality Measurement and Analysis
ID Code:9732
Deposited By: ms aida -
Deposited On:04 May 2016 03:09
Last Modified:14 Dec 2016 06:50

Repository Staff Only: item control page